Roundup: Tyrolean Iceman, Greenland Glaciers and Tibetan Melt

Roundup: Clues to Ötzi, Greenland Glaciers and Tibet


Tyrolean Iceman offers insights into Copper Age clothing.

From Nature: “The attire of the Tyrolean Iceman, a 5,300-year-old natural mummy from the Ötzal Italian Alps, provides a surviving example of ancient manufacturing technologies. Research into his garments has however, been limited by ambiguity surrounding their source species. Here we present a targeted enrichment and sequencing of full mitochondrial genomes sampled from his clothes and quiver, which elucidates the species of production for nine fragments. Results indicate that the majority of the samples originate from domestic ungulate species (cattle, sheep and goat), whose recovered haplogroups are now at high frequency in today’s domestic populations. Intriguingly, the hat and quiver samples were produced from wild species, brown bear and roe deer respectively. Combined, these results suggest that Copper Age populations made considered choices of clothing material from both the wild and domestic populations available to them.”

Learn more about the clothing of the Tyrolean Iceman here:

 Reconstruction of Ötzi the Iceman (source: OetziTheIceman/Flickr)

Reconstruction of Ötzi, the Iceman (source: OetziTheIceman/Flickr)


Early researchers of Greenland’s glaciers.

From Exploring Greenland: “Christopher J. Ries sheds light on the disparate goals of three diverse groups that created geological knowledge in post-World War II Greenland: the civilian scientists of the US Geological Survey Military Branch working in northern Greenland, an international team of geologists of the Danish East Greenland Expeditions led by Danish geologist Lauge Koch working in eastern Greenland, and geologists of the Danish Geological Survey of Greenland working in western Greenland. Ries argues that the interdisciplinary American group’s ultimate mission was to enhance the ability of military units to operate in Arctic terrains, while the two mono-disciplinary Danish-led teams attempted to balance academic interests in mapping and interpreting the structure of bedrock against more prosaic pursuit of profitable minerals.”

Read more about the early researchers of Greenland’s glaciers here:

A Greenland Glacier (source: Kyle Mortara/Flickr).
A Greenland Glacier (source: Kyle Mortara/Flickr).


Glacial melt of Tibetan Plateau exceeds USEPA guidelines.

From the Journal of Hydrology: “Global warming has resulted in rapid glacier retreat on the Tibetan Plateau, and the impacts of glacier melting on downstream ecosystems remain largely unknown. Minor and trace elements in stream water draining Dongkemadi Glacier  were examined during the ablation season of 2013…Downstream increased concentrations and/or fluxes of some metals and metalloid (e.g. Cr, Cu and As) suggest potential environmental impacts. Discharge-normalized cation denudation rate (372 Σmeq+m−3) in the Dongkemadi Glacier basin is larger than those from alpine and polar glaciers, suggesting a stronger weathering of carbonate with greater abundance on the Tibetan Plateau in comparison to other mountain and polar glacial catchments. The maximum Fe concentration exceeds the USEPA guideline, and Al, Zn and Pb are close to or of the same order of magnitude as liminal values. This implies that the Tibetan Plateau may face a challenge of ecosystem health and environmental issue in a warming climate.”

Learn more about the Tibetan Plateau here:

The landscape of Tibet (source: reurinkjan/Flickr).
The landscape of Tibet (source: