Tensions Among Early Glacier Researchers in Alaska

A new study published in the journal Isis details a decades-old conflict between early glacier researchers in Alaska, a conflict that remains relevant today. The controversy, known as the Miller–Beckey dispute, started at the Juneau Icefield in the late 1940s when a scientist-climber named Maynard Miller clashed with fellow mountaineer Friedrich Beckey. Beckey discounted Miller’s scientific research due to Miller’s secondary role as a mountaineer, suggesting that because Miller was a sportsman, he could not also be a serious scientist. The dispute took place at a time when North American glaciology was a nascent geophysical science.

Hikers on the Mendenhall Glacier, Juneau Icefield (Source: Gillfoto/Flickr).

The Background of the Conflict

The Juneau Icefield Research Project (JIRP), which brought both men to the ice, was one of the first programs of glaciology in North America, according to the article’s author, Danielle Inkpen. It was an on-site, long-term study of the Taku glacier, an outlet glacier of the Juneau Icefield. Intensive field observations like those made at JIRP required researchers to live on the ice for extended periods of time. Dangers such as hidden crevasses and snow blindness required the traditional skill set of a mountaineer. As a result, JIRP drew many fieldworkers from elite mountaineering circles. 

Miller, founder and long-time director of JIRP, was one of these early adventurers. Inkpen writes that Miller was a skilled climber, having joined America’s first Mt. Everest expedition in 1963. But he was also an educated scientist who studied geology and glaciology, earning undergraduate and master’s degrees from Harvard and Columbia University, and a Ph.D. from Cambridge University. Miller’s dual roles as both an active mountaineer and scientific researcher prompted his rival Beckey to cast doubt on his scientific credibility. Nicknamed “lone wolf,” Beckey was a legendary American rock climber and an Alpine-style mountaineer. He is known to many from the documentary, “The Legend of Fred Beckey,” for having completed more first ascents than any other North American climber.

JIRP Crew, 1949. Miller is in the middle.(Source: Isis/“The Scientific Life in the Alpine: Recreation and Moral Life in the Field”).

Miller was first introduced to the Alaskan glacier as a member of an expedition which first summited Mount Bertha, led by Bradford Washburn, his geography instructor at Harvard. Miller and Washburn built a sense of camaraderie when they were roped up together during a climb while both part of the Harvard Mountaineering Club (HMC). Later, Washburn recommended Miller as the field assistant for glacier research in Alaska in 1941 with William Field, one of the founders of the HMC and also a leading mountaineer, photographer and geologist in the 1920s with a number of first ascents to his credit. These men all came to glaciology through mountaineering. Miller’s passion for scientific fieldwork in Alaska originated in his desire to explore the climbing potential in southern Alaska.

The Conflict Develops

Miller returned to Alaska in 1947 for JIRP. The project’s primary funder was the Office of Scientific Research and Development of the American military. Inkpen explains that investment in glaciology was made possible by the United States military, which increased expenditures during the Cold War amidst national security concerns. The Polar region was a major geopolitical hotspot at the height of the conflict, and launching missiles from secret bases under ice caps was considered a possibility. Observations of Alaskan glacier fluctuations during this time triggered further investigations into the relationship between glaciers and climate. In order for JIRP to avoid a misunderstanding about their primary commitment to science, it had to keep its professional image as a glacial science organization, Inkpen notes. Other glaciological expeditions at the time, like Snow Cornice, were supported by private funders. As JIRP’s military sponsor said, ‘‘No funds could be provided for mountaineering.”  

As a result of this policy, Miller did no climbing during the first summer of research at Juneau. However, he was reportedly located close to the attractive spire, Devil’s Paw. He also wrote an article about the mountaineering possibilities at Juneau Icefield for HMC’s Bulletin; according to Inkpen, Miller believed that this piece would go unnoticed by his funder. She quotes his article as stating that the 1949 season would bring “many interesting ascents of the magnificent granite and metamorphic rock peaks which protrude out of the ice and snow in this glacial-alpine paradise.”

Fred Beckey ascending rope on an “aid pitch,” North Cascades, n.d. (Source: North Cascades National Park archives).

Miller and Beckey had an unpleasant history before their confrontation in Juneau. Inkpen explains that as climbing partners, they failed to reach the summit of the Nooksack Tower in North Cascades National Park, in Washington State. However, Miller would later try a second time with another team, excluding Beckey. Then, in 1948, when Miller became field leader at the Juneau Icefield, he wrote a letter to Beckey telling him to stay away, Inkpen reports. She further notes that Miller claimed he was afraid that the press attention from Beckey’s first ascent would undermine JIRP’s reputation, especially at a time when the organization needed funding. However, the true purpose of the letter remains unknown. Inkpen indicates that it cannot be ruled out that Miller merged private affairs into public ones, wanting to save the first ascent for himself. Beckey followed Miller’s request for a time, but in 1949 he marched to Juneau unexpectedly and successfully conquered the Devil’s Paw.

The Consequences of the Conflict

Reverberations continued for Beckey and Miller after Beckey wrote to American Alpine Club (AAC) condemning Miller for practicing pseudoscience and using science as a cover for his mountaineering ambitions. Beckey further accused Miller of violating the codes of sharing information with fellow mountaineers. Certain gentlemanly rules inherited from the Victorian golden age of climbing governed first ascent. Using climbing information from other climbers to reach the summit was regarded as improper. Beckey even claimed that Miller had besmirched him and broke his climbing buddy’s arm during a visit. 

Instead of declaring the scientific importance of his research to defend himself and the JIRP, Miller hit back as a mountaineer, reportedly stating, “That is the most unfortunate [and] uncalled for situation that has ever arisen to besmirch the name of the HMC and the AAC.” He asked the mountaineering community to ban Beckey’s actions and questioned Beckey’s integrity for deliberately concealing his climbing routes. As a result, the AAC convened a three-person committee to investigate this Miller-Beckey dispute. According to the article, the committee concluded the matter as an attack on Miller’s professional credibility in order to encourage the club members to work with scientific expeditions. Their judgment had a profound influence on interweaving scientific research with mountaineering, Inkpen reports.

As GlacierHub learned from Erin Pettit, a glaciologist at the University of Alaska who conducts research and teaches at JIRP, the conflict between mountaineers and scientific research is still relevant today. “There certainly is a challenge when ego comes into play,” Pettit said. “If someone on a field team has more of a mountaineering ego, he/she wants to summit a mountain and put the science as a lower priority, that may be their choice. However, if it affects the goals of the entire field research team, then that is an issue. Similarly, a team of mountaineers might have the goal of achieving a new route on a mountain. If one of them is also a scientist and gets too distracted by science to support the goals of the mountaineering team, then the team will suffer.” Teamwork relies on having everyone on board with the goals of the team, she said. This involves each team member knowing what their role is on the team.

In the end, the Miller–Beckey dispute revealed a conflict between scientific and recreational values. It shows how pride and a competitive spirit can undermine the teamwork that is required for new accomplishments in the field, a topic of significance even today.


Please follow, share and like us:

Human Interference in the Pacific Northwest & Alaska: Will Wild Salmon Survive?

Anthropogenic environmental changes such as fossil fuel extraction and glacial retreat are two negative impacts affecting salmon species. But not all news is bad news. With retreating glaciers comes the possibility of producing new habitat for certain salmon populations, according to recent research published in BioScience.

Connecting Climate Change with Salmon Species

A total of five species of salmon swim within the rivers of the United States: chinook, coho, sockeye, pink and chum. Glacial retreat presents a variety of unknowns for these salmon species.

Among the climate change consequences, glacial melting upstream leads to changes in magnitude, timing, and frequency of flow downstream, which impacts nutrient levels as well as sediment levels. Warming of glacier-fed rivers due to warmer atmospheric temperatures could destabilize ecosystems and cause population die-offs. Significant warming of the oceans will also lead to damaging conditions for salmon species.

Johns Hopkins Glacier in Glacier Bay National Park
(Source: John Bloomfield, Flickr).

On a more positive note, glacial retreat could also drive the formation of new habitat for salmon species. Salmon use evolutionary adaptive strategies to colonize new streams and therefore are able to stray from their natal streams to find more productive waters. Evidence of this colonization has already been documented in Glacier Bay National Park with coho salmon.

How much new habitat will be created?

The Earth to Oceans aquatic ecology research team, led by associate professor Jonathan Moore, looked at the impacts of glacier retreat on salmon habitat, specifically which glaciers will establish new habitat. Kara Pitman, a researcher in the lab and a Ph.D. candidate at Simon Fraser University, told GlacierHub that approximately “thirty to fifty ocean-terminating glaciers in Alaska will produce new habitat.”

Areas in the Pacific Northwest and Alaska that have large, low-elevation glaciers will retreat back to expose this new habitat. The Bering Glacier in Alaska is one glacier that is likely to produce new habitat due to its low valleys, according to the researchers.

Image of Bering Glacier in Alaska, USA (Source: liza.liversedge/Flickr).

Pitman suggests that pink and chum species that spawn near the ocean in the river mouth may benefit due to new downstream habitats, and chinook, which spend more time in the freshwater rivers, may also benefit. 

All species of salmon rely on both freshwater and saltwater throughout their lives to varying degrees. Adult salmon spend a few years in the ocean following primary development, but once adult salmon reach reproductive maturity, they undergo physical changes that prepare them to return to freshwater streams. When they reach appropriate stretches of freshwater, they release eggs and sperm into the water, allowing fertilization and the continuation of the cycle of life. 

A member of the Moore Lab on the Edziza Glacier in Edziza Provincial Park, BC (Source: Kara Pitman).

It’s also important to note that salmon are limited by stream gradient; as a result, they will not be able to swim up into many of the new habitats.

Pitman says that there are no salmon present in these newly formed waters at the moment, so there are currently no negative consequences of glacial retreat on these salmon populations.

“There may be no salmon now, but there might be in several years, so there will be impacts,” shesaid.

Mining’s Impact on Salmon Populations

At the same time, human interference such as negligence and reliance on fossil fuels negatively impacts salmon ecosystems across the world, including in Alaska and the Pacific Northwest. Industrial runoff from mines leaches into nearby streams, pollutes the water and poisons the fish. Preventative measures to manage waste and clean up efforts are not yet developed and little effort seems to focus on advancing protective policies.

Taku Glacier in Alaska, USA
(Source: Barbara Ann Spengler)

For example, mining in Northwest British Columbia and Southeast Alaska is a serious issue that affects Taku, Stikine, and Unuk watersheds. The Taku River contains all five species of salmon and is glacial-fed from Taku Glacier. It is likely that in the near future acid mine drainage will harm fishing and tourism industries, indigenous cultural activities, and local peoples.

Similarly, near Bristol Bay in southwestern Alaska, a new mega mine is undergoing proposal and review. The Pebble Mine would be the largest mine in North America and could wreak havoc on one of the most productive salmon ecosystems. 

Immediate action is required to halt future fossil fuel excavation projects and protect wild salmon populations in Northern Pacific and Alaska.

Please follow, share and like us: