Mercury from Melting Glaciers Threatens the Tibetan Plateau

Often referred to as “the Roof of the World,” the Tibetan Plateau is known for its unspoiled environment and plentiful water resources. The Tibetan Plateau is an expansive region with an average elevation of 2.8 miles and an area of 965,300 square miles. The plateau is estimated to provide water to more than 1.35 billion people throughout Asia.

Due to increasing anthropogenic aerosols in the atmosphere, the scientific community has become increasingly concerned about the plateau and its critical water supply. Anthropogenic aerosols are small, atmospheric particles of carbon, sulfur dioxide, and mercury that are released through the burning of fossil fuels—more specifically, coal. Aerosols can be transported by wind from one location to another all across the world.

Jyekundo, Tibetan Plateau, China (Source: reurinkjan, Flickr)

A research team, led by Chinese Academy of Sciences researcher Rukumesh Paudyal, sought to learn more about mercury concentrations on the Tibetan Plateau. They published their findings in the journalEnvironmental Science and Pollution Research.

Paudyal and his colleagues traveled to the remote location of Mt. Yulong, which is located in the southeastern region of the plateau. There, they collected various snow and water samples from Baishui Glacier, Lashihai Lake, and Luguhu Lake at different altitudes.

Uncovering the Study’s Findings

Once back in the lab, the researchers completed chemical analyses on the samples using ion chromatography and fluorescence spectrophotometry. These research methods are used to measure the chemical components and concentrations of the collected sample.

The results of the chemical analyses indicated that mercury is sourced from the earth’s crust as well as anthropogenic aerosol sources. Additional findings revealed that mercury concentrations were consistent with concentrations at other sampled regions on the Tibetan Plateau, but concentrations were noticeably higher than in previous years.

Lashihai Lake, Tibetan Plateau, China (Source: Patrick J, Flickr)

“Temporal variation of Hg [mercury] concentration suggested that the highest concentration of Hg [mercury] was found in the fresh snow, possibly have been carried from the source regions (industrial regions) by long-range transportation,” the researchers wrote.

Mercury concentrations were also higher at lower elevations, possibly due to glacial surface melting. During melting, mercury particles become exposed on the snow’s surface, forming dirt cones and resulting in higher concentrations.

Unfortunately, high mercury concentrations at low elevations present problems to the communities and countries that rely on the plateau for drinking water. Release of mercury into the local ecosystem will likely result in negative implications to both human health and wildlife. At high exposure levels, mercury can become toxic to humans and alter vital organ functioning.

Shichang Kang, a co-author of the study and researcher with the Chinese Academy of Science, told GlacierHub: “As discharge of glacier melt has been increased recently, Hg [mercury] stored in glacier[s] will be released faster than before. The way to prevent Hg [mercury] emitted [into] the downstream ecosystem is to mitigate glacier melt.”

Read More on GlacierHub:

Rising Temperatures May Not Cause More Frequent GLOF Catastrophes

Illustrating the Adventures of German Naturalist Alexander von Humboldt

The Dead of Mount Everest Are Seeing the Light of Day