Meltdown in Canadian Ice Core Facility

A view of an ice core in a repository (Source: Fred W. Baker III/USDoD).

The Canadian Ice Core Archive in Edmonton, run by the University of Alberta, recently lost almost 13 percent of their ice cores in a perfect storm of system and equipment failures. The freezer containing thousands of precious ice core samples malfunctioned one weekend in April and the alert that was meant to sound if the freezer failed also faulted. To make matters worse, the system then tried to correct itself, which meant it blew hot air into the room, accelerating the melting of the cores. The temperature in the room rose so high that it set off the fire alarm in the building.

Ice cores at the Canadian Ice Core Archive are typically kept at -37°C. But over the weekend, temperatures increased to upwards of 40°C, leaving inches of water on the floor by Monday morning. In the meltdown, the archive lost some of its oldest and most precious ice cores from Northern Canada that glaciologists have been collecting since the 1970s. In total, 4,000 ice core samples were destroyed overnight, sending ripples of concern through the science community.

The lost ice cores held 22,000 years of data within their layers and came from such diverse locations as Mount Logan, the tallest peak in Canada, and Baffin Island’s Penny Ice Cap, among other locations.

A view of an ice core sample and its layers (Source: Eden, Janine and Jim/Flickr).

It is no surprise that climate scientists and glaciologists value ice core data for what it can tell us about past climate. Glaciers start as layers of snow, which slowly accumulates, forming ice. Dust, pollen, and bubbles of trapped air in each layer of snow becomes a part of the ice. Ice cores are drilled samples of these layers, each sample telling a story of historical atmospheric and temperature conditions. Thus, storage of ice cores in repositories is extremely important.

A scientist preparing and measuring an ice core sample in the field (Source: NASA/Flickr).

Replacing the 4,000 lost ice cores in Edmonton is essentially out of the question. Each sample would cost upwards of $1 million dollars to replace and presents massive logistical issues in obtaining new ones due to the remote location of the Arctic. The process of drilling ice cores is extremely time consuming and technically demanding. Ice cores are either drilled with a thermal or mechanical drill, and samples range from one to six meters in length. 

It seems the only way forward from this ice core catastrophe is to ensure that the Canadian Ice Core Archive does not have another failure. This involves sharing lessons learned from this incident and other ice core repositories.

In times like these, the last thing the world needs is more lost climate data. Fortunately, the archive’s oldest ice from the last continental ice sheet was not in the malfunctioning freezer, a small wrinkle in an otherwise tragic tale.