The Accumulation Zone of Alaska’s Mendenhall Glacier Is Shrinking

Mendenhall Glacier is the most visited and photographed terminus in the Juneau Icefield region. The glacier can be seen from the suburbs of Juneau.  Its ongoing retreat from the Visitor Center and the expansion of the lake it fills is well chronicled. Here we document the rise in the snowline on the glacier that indicates increased melting and reduced mass balance that has driven the retreat. The change in snowline from 1984-2018 and the associated retreat are documented. The snowline as July begins in 2019 is already in the end of summer range.

Mendenhall Lake did not exist until after 1910. In 1948 it was 2.2 kilometers across, and by 1984 the lake was 2.7 km across.  Boyce et al (2007) note the glacier had two periods of rapid retreat: one in the 1940’s and the second beginning in the 1990’s, both of which were enhanced by buoyancy-driven calving. The latter period has featured less calving, particularly in the last decade, and is a result of greater summer melting and a higher snowline by the end of the summer, which has averaged 1,250 meters since 2003 vs. 1,050 m prior to that (Pelto et al, 2016). In 2005, the base of the glacier was below the lake level for at least 500 m upglacier of the terminus (Boyce et al (2007).  This suggests the glacier is nearing the end of the calving enhanced retreat.  It is likely another lake basin would develop 0.5 km above the current terminus, where the glacier slope is quite modest.

Mendenhall Glacier in Landsat images from 1984 and 2018. Yellow arrows indicates 1984 terminus location, red arrow indicates the Suicide Basin tributary, and the purple dots indicate the snowline.

The glacier in 1984 ended at the tip of a prominent peninsula in Mendenhall Lake. The snowline is at 950 m. In 1984 with the Juneau Icefield Research Program, we completed both snowpits and crevasse stratigraphy that indicated retained snowpack at the end of summer is usually more than 2 m at 1,500-1,600 m. The red arrow indicates a tributary that joins the main glacier, where Suicide Basin currently forms. In 2014 the snowline in late August is at 1,050 m.  The terminus has retreated to a point where the lake narrows, which helps reduce calving. In 2015 the snowline is at 1,475 m. In 2017 the snowline reached 1,500 m.  There is a small lake in Suicide Basin. In September 2018 the snowline reached 1,550 m—the highest elevation the snowline has been observed to reach any year. In Suicide Basin the lake drained in early July. In 2018 Juneau Icefield Research Program snowpits indicates only 60 percent of the usual snowpack left on the upper Taku Glacier, near the divide with Mendenhall Glacier. On July 1 2019 the snowline is already as high as it was in late August of 1984.  This indicates the snowline is likely to reach near a record level again. The US Geological Survey and the National Weather Service is monitoring Suicide Basin for the drainage of this glacier melt filled lake. In 2019 the lake rapidly filled from early June until July 8—the water level increasing 40 feet. It has drained from July 8 to 16 back to it early June Level. The high melt rate has thinned the Mendenhall Glacier in the area reducing the elevation of the ice dam and hence the size of the lake in 2019 vs. 2018.

The snowline separates the accumulation zone from the ablation (melting) zone and the glacier needs to have more than 60 percent of its area in the accumulation zone. The end of summer snowline is the equilibrium line altitude where mass balance at the location is zero. With the snowline averaging 1,500 m during recent years, this leaves less than 30 percent of the glacier in the accumulation zone. This will drive continued retreat even when the glacier retreats from Mendenhall Lake. The declining mass balance is evident across the Juneau Icefield (Pelto et al 2013).  Retreat from 1984-2018 has been 1,900 m. This retreat is better known, but less than at nearby Gilkey Glacier and Field Glacier.

Mendenhall Glacier in a Landsat image from 2014. Yellow arrows indicate 1984 terminus location, and the purple dots indicate the snowline.
Mendenhall Glacier in a Landsat image from 2015. Yellow arrows indicate 1984 terminus location, and the purple dots indicate the snowline.
Mendenhall Glacier in a Landsat image from 2017. Yellow arrows indicate 1984 terminus location, and the purple dots indicate the snowline.
Mendenhall Glacier in a Landsat image from 2019. Yellow arrows indicates 1984 terminus location, and the purple dots indicate the snowline.

This article originally appeared on the American Geophysical Union blog, From a Glacier’s Perspective.

Read More on GlacierHub:

New Mountain Bike Trails Highlight Long Island’s Glacier Remnants

To Travel or Not to Travel

New Heights in the Himalayas: High-Altitude Weather Monitoring

Please follow, share and like us:
error

Video of the Week: Alaskan Ice Caves

Do you need to cool off from the stifling August heat?

Video of the Week is just what you need! This week we explore the melting ice caves of Alaska’s Mendenhall Glacier. Currently about 13 miles long, Mendenhall Glacier has been retreating for hundreds of years, and its melt rate has increased in modern times due to climate change. This melting, paired with failing ice dams, has put Juneau residents at risk for flooding as Mendenhall Lake’s water levels continue to rise.

This has not stopped thousands of people from visiting the glacier every year, however. The Mendenhall glacier is a popular tourist destination that flows from the Juneau Icefield all the way to Mendenhall Lake. In fact, the tourist-accessible features of the glacier are in the planning stages of being redone to incorporate new facilities and trails. Unfortunately, the ice caves featured in the video are not as easily accessible to visitors who want to make the adventure themselves. Mendenhall Glacier’s ice caves typically form and melt away quickly, so this video might have to suffice for now to help you escape this summer’s temperatures.

To learn about how Mendenhall Glacier helps teach about climate change, check out one of our articles from earlier this year.

Read more glacier news here:

Solar Geoengineering Could Limit Sea-Level Rise from Cryosphere

Earth in Danger of Tipping into ‘Hothouse’ State, Scientists Warn

Photo Friday: Dodging Fires in Glacier National Park

Please follow, share and like us:
error