Photo Friday: Exhibiting The Icebergs

This Photo Friday features “The Icebergs,” painted by Frederic Edwin Church in 1861, on permanent display at the Dallas Museum of Art. “The Icebergs” draws on a combination of influences: Church’s real-life observations during his month-long voyage in the North Atlantic Ocean, accounts written by other explorers, and the mysterious, ethereal quality of the Arctic. At a Sotheby’s auction in 1979, the painting sold for $2.5 million, the most any American painting had sold for at public auction at the time.

Frederic Edwin Church, “The Icebergs,” 1861, Oil on canvas, Dallas Museum of Art, gift of Norma and Lamar Hunt (Source: Dallas Museum of Art).


Frederic Edwin Church, “The Icebergs.” Close-up of broken mast (Source: Dallas Museum of Art).


Frederic Edwin Church, “The Icebergs.” Close-up of water and cave going through the iceberg (Source: Dallas Museum of Art).


Frederic Edwin Church, “The Icebergs.” Close-up of the painting’s main featured iceberg (Source: Dallas Museum of Art).
Please follow, share and like us:

Loss of Contact with Ridges Below Likely Triggered Pine Island Glacier’s Retreat

The Pine Island Glacier (PIG) is losing ice rapidly. During the past 25 years, the ice of the PIG and its neighboring glaciers in west Antarctica’s Pine Island Bay thinned between 3.9 and 5.3 meters a year, accounting for about 5 to 10 percent of observed global mean sea-level rise. Before 2015, however, the front of the PIG had been at a relative standstill since the 1940s, not retreating as one might expect of a melting glacier. Why? To account for this unique situation, a recently published study in The Cryosphere points to ridges below the ice that likely held the PIG’s ice front in place despite its rapid melting.

In August 2015, the long steady front of the PIG changed significantly when large sections of ice broke off during a calving event when the glacier retreated upstream and its orientation shifted. This change presented an exciting opportunity in 2017 for researchers from the Alfred Wagner Institute for Polar and Marine Research to map the seafloor formerly covered by the PIG.

Photo of the Pine Island glacier
A front section of the Pine Island Glacier (Source: BAS_News/Twitter).

To complete this mapping project, the researchers employed an echo sounder mounted to the hull of the research vessel RV Polarstern, in addition to complementing remote sensing data acquired by satellite. The information acquired by the expedition through echo sounding showed the seafloor features that were present below the PIG. With this data in hand, the researchers had the idea to correlate this information with satellite data from the past to the present to better understand the role of these features for the calving behavior of PIG, according to lead author Jan Erik Arndt, who spoke with GlacierHub about the study.

These survey methods revealed a complex, underwater landscape once covered by the PIG. The discoveries included a 10-kilometer long ridge and two other high points. At its deepest point, Pine Island Bay reaches down over 1,000 meters, while the submarine ridge peaked at 375 meters below the ocean’s surface and the two downstream high points peaked at 350 and 250 meters below the surface

How did these sub-surface features impact the PIG? Satellite data from January 1973 until March 2005 showed a rumple in the PIG’s ice above the location of shallowest section of the underlying ridge. A glacial rumple is similar to a bump on a beach towel that suggests there is a beach toy or pile of sand below it. In the case of the PIG, the ridge below the ice acts as an obstacle in the the way of the ice, leading to a raised section of the glacier directly above the point of contact between it and the ridge. This rumple is not observed after March 2005 in the satellite data, indicating that the ice after this date had thinned to such a degree that it either was no longer in contact with the ridge or was too light to produce a signature on the surface.

Satellite photo of the PIG's calving front.
The evolving calving front of the Pine Island glacier (Source: J. E. Arndt et al.).

The loss of contact with the ridge was consequential. In the time before this separation when the PIG was in contact with the underwater ridge, the ridge acted as a “pinning point,” holding it in place. However, after the ice had thinned considerably, the ridge no longer acted as a restraint on the PIG. As a result, in the time since there was evident contact between the two, four major calving events occurred.

The first of these events took place in 2007 when the PIG advanced and made contact with one of the subsurface downstream high points (A in figure 3). This impact placed what is known as “back stress” on the glacier upstream from the point of contact, causing rifts to form in the ice and ultimately leading to the calving event.

The process leading to the 2011 calving event was similar, the researchers state. In this instance, the second subsurface high point (B in figure 3) trapped a dense cluster of icebergs between it and the PIG ice shelf, placing back stress on the upstream ice leading to the calving event.

Photo of the 2007, 2011, and 2015 calving events in relation to the underlying topography
Before or after the 2007, 2011, and 2015 calving events and the PIG’s position in relation to the underlying topography (Source: J. E. Arndt et al.).

The 2015 event was different: The ice-flow velocity of the northern edge of the PIG’s ice shelf was nearly at a stand still, whereas the velocity of the ice shelf’s central and southern edges increased. Further, the direction of the northern edge’s ice flow shifted around 3 degrees clockwise, while the direction of the central and southern edges did not change (C in Figure 3). The reason? The northern edge of the ice-shelf was likely making slight contact with the submarine ridge, according to the authors.

As a result, the calving line that had not changed orientation in decades finally did change due to the loss of contact between the ice and its previous pinning points as well as from melting from below driven by warm ocean waters. The most recent calving event which occured in 2017 happened along the same orientation, which aligns with a new pinning point to the north near Evans Knoll, a small snow-covered hill that rises above sea level. The point near the knoll is likely one of the last anchors acting on the PIG, according to Arndt.

This new calving line and loss of contact with past pinning points could have grave implications for PIG. A 2017 study on the PIG and a number of other glaciers in the area found that changes to a glacier’s ice shelf propagate upstream within just a few years. For the PIG, this likely means the glacier’s flow will speed up and thinning will increase, leading to further melting.

Photo of Pine Island Glacier rift in 2017
The rift in the Pine Island Glacier that led to the 2017 calving event (Source: American Geophysical Union/Twitter).

It is unlikely the PIG’s calving line will retreat much further over the next few years thanks to the new pinning point stabilizing the glacier near Evans Knoll. However, the authors note that there is continued thinning due to melting. This thinning has the potential to destabilize the glacier and unfortunately may have already started, according to Arndt. The large icebergs produced by the recent calving events have broken up into smaller icebergs much more quickly due to the thinner ice than events in the past, when they remained stable for longer. This ongoing breakup and subsequent melting of calved icebergs will contribute to already rising global sea-levels, threatening the millions of people who live along the coast. And unlike the ridges that held the front of the PIG for decades, many coastal communities will not have anything to hold back the sea.

Please follow, share and like us:

Roundup: Martian Glaciers, Icebergs, and Ice-Diving Drones

New Study on Water Ice Cliffs Found on Mars

From Science: “Some locations on Mars are known to have water ice just below the surface, but how much has remained unclear… The ice sheets extend from just below the surface to a depth of 100 meters or more and appear to contain distinct layers, which could preserve a record of Mars’ past climate. They might even be a useful source of water for future human exploration of the red planet.”

Learn more about the Martian glaciers here.

Image of the Valles Marineris, a massive system of canyons on Mars (Source: Wikimedia Commons).


Over 1,000 Icebergs in Shipping Lanes in 2017

From The Maritime Executive: “The U.S. Coast Guard’s International Ice Patrol said Thursday that 2017 was the fourth ‘extreme’ season in a row for icebergs in the North Atlantic, with 1,008 bergs tallied in the shipping lanes… The count was high due to powerful storms and to the retreat of Greenland’s glaciers, which both contributed to more calving events.”

Check out more information about the migrating icebergs here.

Image of the Eqi Sermia Glacier in Greenland. Retreating exit glaciers, like this one, have resulted in many of the icebergs entering shipping lanes in the North Atlantic (Source: loraineltai/Flickr).


Ice-diving Drones on Risky Mission at Antarctic Glacier

From Scientific American: “This month a fleet of seven underwater robots developed by the University of Washington (U.W.) in Seattle is heading into this world on a risky yearlong mission. Their goal: help forecast sea level rises by observing the melting process in this hidden topsy-turvy world, where layers of warm and cool water mix at the shelf.”

Explore more about the dangers facing the drones and their mission here.

Pine Island Glacier Ice Shelf where the drones will be exploring glacier retreat (Source: NASA Goddard Space Flight Center/Flickr).
Please follow, share and like us:

Using Kayaks and Drones to Explore Glaciers

Field study sounds cool: a group of scientists take boats out into untraveled waters on an important scientific mission, even witnessing extraordinary scenery like an iceberg calving event along the journey. However, the breathtaking beauty of such a trip can also come at a price, sometimes even human life!

“I like working in Alaska, but I face the difficulties of any ice or ocean research project,” said Erin Pettit, an associate professor at University of Alaska Fairbanks. Pettit finds it hard to find a reliable boat and captain for her trips, and too much ice in the fjord often limits how close she can get to the glaciers. The risks to her personal safety rise when she has to work on cold or rainy days.

A group of scientists are collecting data from Le Conte Glacier (source: Cal Dail/Flickr).

“It can be really dangerous in Alaska, so we send the kayaks out,” said June Marion, the principal engineer for a new study using remote-controlled kayaks to research Le Conte Glacier. The oceanic robotic kayaks are controlled by a laptop a few miles away, according to Marion.

“When the calving event happens and an iceberg falls onto the kayak, we do not need to sacrifice valuable human life,” she said. “More importantly, the kayak can go further into unexplored regions. We are more hopeful to collect data.”

Mechanical engineer June Marion works on the kayak’s engine assisted by her dad, Bobby Brown. Working on the rear kayak is robotics science students Nick McComb and Corwin Perren (source: Angela Denning / NOAA).

With a radio controller or a computer, the researchers navigate the kayak by clicking on points on a map, sending the kayak directly to the location for study. The engine can even be started using a computer program.

“There are always new technologies being used on glaciers,” said Pettit.

Guillaume Jouvet et al. figured out another way for scientists to avoid danger during field work. They used unmanned aerial vehicles (UAVs), also known as drones, to study calving of the Bowdoin Glacier in Greenland in 2015. They combined satellite images, UAV photogrammetry, and ice flow modeling, drawing important conclusions from the results.

With UAVs, researchers are able to obtain high-resolution orthoimages taken immediately before and after the initiation of a large fracture, including major calving events. In this way, Jouvet et al.’s study demonstrates that UAV photogrammetry and ice flow modeling can be a safer tool to study glaciers.

Measurement of surface temperature of a glacier using an unmanned aerial vehicle (UAV) (source: W. Immerzeel et al.).

This technology has also been successfully applied to monitor Himalayan glacier dynamics: the UAVs can be used over high-altitude, debris-covered glaciers, with images of glacier elevation and surface changes derived at very high resolutions, according to W. Immerzeel et al.. UAVs can be further revolutionized to develop current glacier monitoring methods.

Scientists like Marion and Pettit are excited to see these new technologies developed to study glaciers and save lives. They are hoping for more methods to achieve this goal.

Please follow, share and like us:

Photo Friday: Glaciers in Films

Magnificent, beautiful and mysterious, glaciers are a critical part of nature. For thousands years, humans have responded to glaciers through art, incorporating them in paintings, poems, folk songs, and more recently, movies. With the development of modern arts, specifically the film industry, glaciers have popped up in a range of creative endeavors from documentaries to animated pictures.

Explore some popular films featuring glaciers with GlacierHub.


Chasing Ice

Chasing Ice (2012) is the story of one man’s quest to gather evidence of climate change. A documentary film about environmental photographer James Balog, it tells the story of his trip to the Arctic to capture images to help tell the story of Earth’s changing climate.

“The calving of a massive glacier believed to have produced the ice that sank the Titanic is like watching a city break apart” (source: Chasing Ice).

The film included scenes from a glacier calving event lasting 75 minutes at Jakobshavn Glacier in Greenland, the longest calving event ever captured on film.

“Battling untested technology in subzero conditions, he comes face to face with his own mortality,” the film introduction states. “It takes years for Balog to see the fruits of his labor. His hauntingly beautiful videos compress years into seconds and capture ancient mountains of ice in motion as they disappear at a breathtaking rate.”

Film still of Chasing Ice (source: Chasing Ice).



Ice Age

Ice Age (2002) is one of the most popular animations in the world and its sequels have continued to delight thousands of children and adults. First directed by Chris Wedge and produced by Blue Sky Studios, the film is set during the ice age. The characters in the film must migrate due to the coming winters. These animals, including a mammoth family, a sloth Sid, and a saber-tooth tiger Diego, live on glaciers. They find a human baby and set out to return the baby.

The animation won positive reviews and awards, making it a successful film about glaciers.

Sloth Sid (source: Ice Age movie).


Film still of Ice Age (source: Ice Age movie).



James Bond

Jökulsárlón, an unearthly glacial lagoon in Iceland, makes its appearance in several James Bonds films, including A View to Kill (1985) and Die Another Day (2002).

A View to Kill, starring Roger Moore, Christopher Walken and Tanya Roberts, was also filmed on location at other glaciers in Iceland, including Vatnajökull Glacier in Vatnajökull, Austurland, Iceland.



China: Between Clouds and Dreams

The documentary China: Beyond Clouds and Dreams (2016) is an award-winning new series by Director Phil Agland. The five-part series tells intimate human stories of China’s relationship with nature and the environment as the country grapples with the reality of global warming and ecological collapse. See the trailer here.

Commissioned by China Central Television and filmed over three years, the film includes a scene of glaciers on the Tibetan Plateau, where the impacts of climate change are most obvious.

Glaciers are disappearing (source: China: Between Clouds and Dreams).


Film still of China: Between Clouds and Dreams (source: European Bank).




Please follow, share and like us:

A New Technique to Study Seals Habitats in Alaska

One harbor seal resting on the glacier ice (Source: Jamie Womble/NPS)
One harbor seal resting on the glacier ice (Source: Jamie Womble/NPS)

There are numerous harbor seals (Phoca vitulina) living in tidewater glacier fjords in Alaska. Harbor seals are covered with short, stiff, bristle-like hair. They reach five to six feet (1.7-1.9 m) in length and weigh up to 300 pounds (140 kg). Tidewater glaciers calve icebergs into the marine environment, which then serve as pupping and molting habitat for harbor seals in Alaska. Although tidewater glaciers are naturally dynamic, advancing and retreating in response to local climatic and fjord conditions, most of the ice sheets that feed tidewater glaciers in Alaska are thinning. As a result, many of the tidewater glaciers are retreating. Scientists are studying the glacier ice and distribution of harbor seals to understand how future changes in tidewater glaciers may impact the harbor seals.  Jamie Womble, a marine ecologist based in Alaska, is one of them.

Harbor seals on the glacier ice. (Source: Jammie Womble/NPS)
Harbor seals on the glacier ice (Source: Jamie Womble/NPS).

As Womble put in her recently published paper in PLOS One, “The availability and spatial distribution of glacier ice in the fjords is likely a key environmental variable that influences the abundance and distribution of selected marine mammals; however, the amount of ice and the fine-scale characteristics of ice in fjords have not been systematically quantified. Given the predicted changes in glacier habitat, there is a need for the development of methods that could be broadly applied to quantify changes in available ice habitat in tidewater glacier fjords.”

Map of Wombls's study area(source: Robert W. McNabb).
Map of Wombles’s study area (Source: Robert W. McNabb).

To conduct her research, Womble has used a variety of analytical tools including geospatial modeling (GIS), multivariate statistics, and animal movement models to integrate behavioral and diet data with remotely-sensed oceanographic data. Most recently, she has worked with object-based image analysis (OBIA).

“OBIA is a powerful image classification tool. Many people studying forests and urban areas use it,” Anupma Prakash, a colleague of Womble and professor of geophysics at the University of Alaska, told GlacierHub. “In our case, we could not use the satellite images because the satellite images did not have the details we required. We flew our aircraft quite low so we saw a lot of detail and could identify individual icebergs.”

OBIA offers an enhanced ability to quantify the morphological properties of habitat. Satellite imagery, on the other hand, is not a viable method in Alaska as there are few cloud free days.


“We wanted to classify our images into water, iceberg, and brash-ice (small pieces of ice and water all smushed together),” Prakash added. “The color and smoothness of water helped us isolate it. For icebergs the color, shape, and angular nature helped us isolate it, and the rest was bash-ice.” So it is now feasible to quantify fine-scale features of habitats in order to understand the relationships between wildlife and the habitats they use.

Harbor seals on the ice (source: Jamie Womble/NPS).
Harbor seals on the ice (Source: Jamie Womble/NPS).

Thanks to the work of scientists like Womble and Prakash, OBIA can now be applied to quantify changes in available ice habitat in tidewater glacier fjords. The method can also introduced in other geographic areas, according to professor Prakash.  Now that there is a more advanced method to study the harbor seals in Alaska, the hope is that other researchers will use the OBIA method to make further discoveries about key ocean habitats.

Please follow, share and like us:

Ivory Gulls Made an Iceberg Their Home

an ivory gull, flying close to the water
Ivory gull. Source: Schneider/Flickr

Researchers recently reported that a threatened species of Arctic seagull had made a colony in an unusual place— on an offshore iceberg. This is the first report of these gulls breeding on an iceberg.

They reported in a short note published in the journal Polar Biology that ivory gulls, Pagophila eburnea, had formed a breeding colony of around 60 adults with numerous chicks and fledglings among them. The gulls, which are named for their all-white plumage, may have made their home there because it allows them to avoid predators (including the Arctic fox, wolf, and polar bear) and because it is close to an area of open water that is a rich source of food. The find represents a new place to look during counts of such birds.

The iceberg where the gulls were breeding. Source: Polar Biology.
The iceberg where the gulls were breeding. Source: Polar Biology.

The iceberg was covered with gravel and debris, and after analysis, the researchers reported that the likely source was a glacier moraine in Greenland. The iceberg was located nearby the North East Water polynya in Northeast Greenland. (A polynya is an area of open water where sea ice would normally be found. These zones open up seasonally, and are rich in foods that the gulls and other predators can consume, including small fish and krill.) The distance from feeding zones to nesting areas can be up to 100 km each way, so having the iceberg near the feeding area saves energy for the parents.

The colony was spotted serendipitously while the researchers were taking observations from the deck of the RV Polarstern on August 9, 2014. The scientists were looking for seabirds and marine mammals as part of a long-term study of the relationship between predator densities and environmental factors in the polar region.

The location of the ship and the extent of the sea ice when the birds were seen. Source: Polar Biology.
The location of the ship and the extent of the sea ice when the birds were seen. Source: Polar Biology.

Ivory gulls typically breed on nunataks, which are areas of exposed rock from mountain ice and snow fields, or on remote coastal islands. It had been suspected that the gulls might breed on offshore ice islands. A few studies also document the birds breeding on gravel-covered sea ice, though these were near the shore.

The iceberg that was home to the colony was 70 km offshore. The researchers state that they assumed the iceberg was grounded, rather than freefloating, based on the typical depth of East Greenland icebergs.

The observation of these gulls is also interesting because they are a near-threatened species, according to the IUCN Red List. While the ivory gull was among the most frequently seen gull in the Arctic in the 1990s, it is not even among the top ten any more, according to the researchers. The estimated total number of individuals of this species in the Greenland sea has also fallen, according to observations by the authors. The global population of these gulls is now estimated at between 19,000 and 27,000, they noted. The number of gulls seen in this colony makes it an average sized colony for this species. The authors weren’t able to provide an estimate of the number of young gulls, because they blend into the gravel so well and because the authors weren’t able to observe all parts of the breeding site closely.

The authors wrote, “Juveniles of different age (from chicks in downy plumage to fledglings) were observed, but not quantified because parts of the breeding site could not be sighted properly at close range and due to their excellent camouflage on the gravel.”

An adult gull and fledglings on the iceberg. Source: Polar Biology.
An adult gull and fledglings on the iceberg. Source: Polar Biology.

The ivory gull does not venture far from the Arctic Ocean, according to the Cornell Laboratory of Ornithology, and the iceberg was located in the Greenland Sea, which is nearby. Earlier this year, an ivory gull was spotted in Duluth, Minnesota which, though close to the border between the US and Canada, is still far from its normal range. The appearance of the gull attracted bird enthusiasts from all over the country who saw it as a once-in-a-lifetime opportunity to add a species to their life lists.

As climate change has resulted in more icebergs calving off Greenland, it will be interesting to see whether birds like the ivory gull will be able to use them as breeding sites, or if other colonies of ivory gulls are found on icebergs in the future.

Please follow, share and like us:

Roundup: Icebergs, Mobile Toxins, Festive Algae

Iceberg Ahead! A New Study Finds Way to Avert Disaster

“When performing offshore operations in the Arctic, there are several challenges. One of those challenges is the threat of icebergs on offshore structures and vessels. Icebergs can exert extremely high loads on vessels, offshore platforms, and seabed installations.”

Arctic iceberg photographed aboard the NOAA Ship Fairweather. (Courtesy of :NOAA's National Ocean Service /Flikr)
Arctic iceberg photographed aboard the NOAA Ship Fairweather (Courtesy of :NOAA’s National Ocean Service

Find out how the team is proposing safer Arctic travels.


 Glaciers Retreat Toxic Metals Are on the Move in Tibet

“In mountain ecosystems, the most important natural source of trace metals is from the weathering of parent materials. However, in recent decades, the metals in mountain regions are mainly from anthropogenic sources including mining, refinement, and fuel combustion. Considering the toxicity of trace metals, it is necessary to investigate and evaluate their mobility and eco-risk in mountain ecosystems.”

Cadmium, one of the elements of concern found in Tibetan soil. (Courtesy of :Images of Chemical Elements/Wikimedia))
Cadmium, one of the elements of concern found in Tibetan soil. (Courtesy of :Images of Chemical Elements/Wikimedia))

Learn more about the possibly toxic soil exposed as glaciers retreat.


With Red and Green Snow, Algae Just Misses Christmas Season

“We demonstrate that green and red snow clearly vary in their physico-chemical environment, their microbial community composition and their metabolic profiles. For the algae this likely reflects both different stages of their life cycles and their adaptation strategies. ”

Red and green algae plumes atop Californian water fields. (Courtesy of :Caribb /Flikr)
Red and green algae plumes atop Californian water fields. (Courtesy of:aribb

Read more about the colorful algae and what it means for soil quality.


Please follow, share and like us:

Roundup: Calving, ‘Record grooves’ and Story Maps

Calved Greenland Iceberg 

A calved iceberg in Greenland (Photo: Flickr)

“Iceberg calving is ultimately related to the mechanical failure of ice. However, predicting mass loss from calving events remains challenging because calving takes on diferent forms under different conditions. For example, large tabular icebergs sporadically detach from freely foating ice tongues with many years of quiescence between major calving events”

Read more on the physics of iceberg calving here.


Telling a Glacier Story through Maps

Advancing Harvard Glacier (Photo: Flickr)


Alaska Ice: Documenting Glaciers on the Move is an Esri Story Map which uses satellite imagery and comparisons of modern & vintage photographs to document Alaska’a glaciers.”

Read more on ESRI’s Story Maps and Time-lapse here.


Linking Earth’s Ice Ages to Ocean Floor topography

Ocean Floor topography/Abyssal Hills (
Ocean Floor topography/Abyssal Hills (

“The evidence comes from seafloor spreading centers: sites throughout the ocean where plates of ocean crust move apart and magma erupts in between, building new crust onto the plates’ trailing edges. Parallel to these spreading centers are “abyssal hills”: long, 100-meter-high ridges on the diverging plates, separated by valleys. On bathymetric maps of seafloor topography, they look like grooves on a record. These grooves, it now turns out, play the tune of Earth’s ice ages.”

Read more on ‘Record grooves’ at Science.







Please follow, share and like us:

Roundup: Thawing Glaciers, Iceberg Calving, “Dead” Glaciers

Thawing Glaciers Release Pollutants 


“As glaciers increasingly melt in the wake of climate change, it is not only the landscape that is affected. Thawing glaciers also release many industrial pollutants stored in the ice into the environment. Now, within the scope of a Swiss National Science Foundation project, researchers from the Paul Scherrer Institute (PSI), Empa, ETH Zurich and the University of Berne have measured the concentrations of a class of these pollutants – polychlorinated biphenyls (PCB) – in the ice of an Alpine glacier accurately for the first time.”



Iceberg Calving is Extremely Sensitive to Climate Change


“Sea level rise is among the greatest threats due to climate change. Over the next century, ice sheets and glaciers will be one of the main contributors, through melting and calving of ice into the oceans. The amount of calved ice is not easy to reproduce in computer simulations, and due to the rapid and non-linear variability of calving fluxes, they are usually difficult to include in models forced by evolving climatic variables. Simulation of iceberg calving remains one of the grand challenges in preparing for future climate change.”

Read more at or at Nature Geoscience.


Black and White Photographs of “Dead” Glaciers


“I started from a data analysis conducted by the Swiss Glacier Monitoring Network to see the map of the glacier and its relative changement in the length variation from 1961 and 2011. It’s interesting the word used to call the part of a glacier that goes under a certain mass. They are called “dead”. All the pictures shown here are taken to the new entrance of the glacier, in the “dead” part of it. Looking at the map, 50 years ago, this would have been completely covered by the ice.”


Please follow, share and like us:

Glacier Water Now In A Vodka Near You

Icebergs are harvested for use in a variety of different hard alcohols. (Source: Alaska Distillery)
Icebergs are harvested for use in a variety of different hard alcohols. (Source: Alaska Distillery)

Are you there vodka? It’s me, glacial water.

Protected for centuries from pollutants in the air and sea, water from glaciers has sprung up in a new market: liquor.

“It’s the notion that it’s kind of untouched by human hands,” Beverage World editor in chief Jeff Cioletti told Outside Magazine in 2013, “you can’t get water purer than that.”

The makers of Iceberg Vodka harvest their ice from Canada's Iceberg Alley. (Source: Iceberg Vodka)
The makers of Iceberg Vodka harvest their ice from Canada’s Iceberg Alley. (Source: Iceberg Vodka)

Water with fewer impurities is a key element in high-quality liquor. Though using glacial water small part of the market, several companies are using water trapped in glaciers for thousands of years to make vodka and other liquors, including Finlandia, Estonia’s Ston vodka, and Alaska Distillery.

Since glacier harvesting is not done substantially, there is little regulation of it. Alaska is the only U.S. state that requires permits in order to use the water. Scott Lindquist, the head distiller of Alaska Distillery, is the sole holder of such a permit. His company is using meltwater from icebergs broken off of the Harding Ice Field in Prince William Sound to make vodka. Yet, Lindquist is not alone, people from Newfoundland and Labrador, where permits are also required from the provincial government, have been harvesting icebergs for centuries. Ed Kean, a fifth-generation sea captain, seeks Canadian icebergs every year for a local vodka maker, a brewer, a winery and a bottled-water outfit in Newfoundland. Icebergs calved off the ice-shelf of Greenland arrive in Newfoundland and Labrador during spring and early summer and they can be harvested until late September.

Glacial water figures into many different spirits from the Alaska Distillery. (Source: Alaska Distillery)
Glacial water figures into many different spirits from the Alaska Distillery. (Source: Alaska Distillery)

Iceberg harvesting is not an easy job and choosing the right bergs is a skill. Years of experience is required to determine where and which iceberg to harvest as well as how to remove the ice without rolling the iceberg. People like Lindquist and Kean are particular about the glacial loot they gather. They prefer clean, round pieces not exposed to the sun too long to avoid evaporation of the “oldest and tastiest inner crystals”. Once they’ve found the suitable ice, they would scoop up or break off pieces of ice using tools like hydraulic claw. The difficulty of iceberg harvesting is the reason that Lindquist is the only remaining ice-harvesting permit holder in Alaska, which once stood at 12 issued permits.

Although beverages containing glacial water are attractive, it is also a challenging market. Despite the technical difficulties of iceberg harvesting, this activity may be opposed by tourism industries. Some local tourism officials in Newfoundland think iceberg harvesting is threatening the unspoiled beauty, which is a main tourist attraction each summer in Newfoundland. “Demand for iceberg is booming,” Kean told Wall Street Journal last year. Keeping up with demand for iceberg-infused drinks is another big challenge for these companies.

To learn more about icebergs in Newfoundland, check out GlacierHub’s story on Canada’s Iceberg Alley.

Please follow, share and like us:

A trip down Canada’s “Iceberg Alley”

2014_0711PinwareIcebergs (12)adj

I write this from Fogo Island, where the terrain and sea are sub-arctic, brushed and at times tormented by the strong and cold Labrador Current, which wards off the warmer waters of the Gulf stream. The Labrador Current is part of the counter-clockwise vortex of the western waters of the North Atlantic ocean that picks up the pieces of glaciers of Greenland. The broken pieces become icebergs, and the waters of the north east coast of Newfoundland, where Fogo Island sits, are known as “Iceberg Alley.”

In some years, like this one, 2014, icebergs from western Greenland (and, to a lesser extent, the Canadian Arctic) come close to shore in large numbers. Many remain grounded on shoal spots through the summer. As of this writing, August 10, 2014, twenty to twenty-five icebergs are known to be on the Funk Island Bank, within 100 miles of Fogo Island. There were hundreds here in May and June.

To someone like me, an outsider who happens to have visited for the past 42 years, the sight of icebergs brings wonder and delight and demands photos.

Tourist boat “Ketanya” (captain Aneas Emberley) returning from iceberg, whale, and fishing cruise. Joe Batt’s Point, August 2, 2014. (Bonnie J. McCay)
Tourist boat “Ketanya” (captain Aneas Emberley) returning from iceberg, whale, and fishing cruise. Joe Batt’s Point, August 2, 2014. (Bonnie J. McCay)

This year’s bounty is particularly joyful, because Newfoundland’s tourist economy, which increasingly sustains its rural “outport” communities, relies heavily on people like me. For the past several years, there were few icebergs to be seen during the peak tourist season, July and August, and that hurts Newfoundland, which uses icebergs as major attractions for tourists. (The provincial government established to help tourists and their hosts identify where they might have a chance of seeing icebergs from the shore or from boats.)

Local newspapers announced that 2014 was a “banner year” for iceberg sighting, and there are hopes that reports of this will stimulate more people to come next year. This year is also a “banner year” for warm weather, fish, and whales on Newfoundland’s northeast coast. In July and early August the one business providing boat trips for visitors to Fogo Island was able to promise not only getting close to icebergs but also calm seas, opportunities to watch humpback, finback, and minke whales, and chances to drop a line and catch codfish.

"Der Untergang der Titanic" (illustration by Willy Stöwer)
“Der Untergang der Titanic” (illustration by Willy Stöwer)

The dark side to icebergs is well known, although it is usually overlooked by tourists who take pleasure in their beauty. After all, Iceberg Alley is where the Titanic struck an iceberg and went down in April 1912, killing more than 1,500 people. The Canadian Ice Service’s reports on icebergs are used not only for tourism but also to warn ships of dangers at sea.

For local fishermen, a year like this is a problem, too, because icebergs can tear up crab pots and other fishing gear, normally put out once the sea ice has diminished in late April or May. Fishing crews must keep someone on watch all night to avoid collision with icebergs. As problematic are the smaller pieces of ice, the “bergy bits” and “growlers” that break off of the larger bergs. Bergy bits are small icebergs, roughly the size of a house. Growlers is the local name for pieces much the size of a grand piano (the similes come from Stephen Bruneau’s Icebergs of Newfoundland and Labrador). Small as they are, they are hard to see with radar and can be very damaging to boats and gear.

A “table” iceberg off the coast of Change Islands, August 4, 2014. (Bonnie J. McCay)
A “table” iceberg off the coast of Change Islands, August 4, 2014. (Bonnie J. McCay)

Fishermen are therefore very respectful and even fearful of icebergs. They take great care not to get too close to them, despite pleas from tourists. On the other hand, even smaller chunks of ice, often seen near foundered icebergs, can be captured with gaffs and nets and brought aboard, to provide fresh water for the crew and to take home to keep in the freezer, to be used as “iceberg ice” in drinks.

Over the last decade, with the rise of tourism, iceberg ice has gained some panache; who wouldn’t find it interesting to be told they were drinking 10,000-year-old fresh water taken from a piece of a glacier floating in the sea! Always enterprising, some Newfoundlanders have made businesses of providing iceberg ice, and there are companies that have licenses to harvest icebergs in Canadian waters. The Canadian Iceberg Vodka Corporation uses the small bits of ice that break off from bergs for its product.

A “sailing ship” iceberg off the coast of Fogo Island, July 17, 2014. (Bonnie J. McCay)
A “sailing ship” iceberg off the coast of Fogo Island, July 17, 2014. (Bonnie J. McCay)

Symbolic of what has happened in Newfoundland in recent decades is the fact that the iceberg vodka business took over an abandoned salt cod factory, in the coastal town of Port Union in 2013. For most of the 20th century, Port Union was a major fishing town and the home of a fishermen’s union. In 1992, the cod fishery was officially declared in “collapse” and local cod populations have only grown slowly The fishery may never recover economically. But like the fishery, iceberg vodka depends on the vagaries of nature, and a series of low iceberg years makes it vulnerable to collapse as well.

Iceberg presence and abundance along the coast of Newfoundland is variable, and people value them and fear them for different reasons and from different perspectives. Like the unusually warm and dry weather of the summer of 2014, it’s easy to think that the stunning parade of icebergs is one of the positive effects of global warming. Their appearance on the coast may increase for some time with the warming and melting of the glaciers of Greenland, as well as the glaciers of Canada’s Arctic islands. On the other hand, warmer North Atlantic waters hasten the melting of icebergs, too. In any case, their routes are not always close to the coasts, making life in Iceberg Alley as unpredictable as ever.

For more about the birth of icebergs in Greenland, click here.

And for another story linking glaciers and tourism, click here.

This guest post was written by Bonnie McCay Merritt of Rutgers University. If you’d like to write a guest post for GlacierHub, contact us at or @glacierhub on Twitter. 


Please follow, share and like us: