Roundup: Expanding Glaciers, Appraising the Himalaya, and Ice Worms

Study shows a glacier is expanding

From Frontiers in Earth Science: “There is strong variation in glacier mass balances in High Mountain Asia. Particularly interesting is the fact that glaciers are in equilibrium or even gaining mass in the Karakoram and Kunlun Shan ranges, which is in sharp contrast with the negative mass balances in the rest of High Mountain Asia. To understand this difference, an in-depth understanding of the meteorological drivers of the glacier mass balance is required.”

Read the study here.

The outer domain (D1, 25 km, middle panel), with its nests. Left panel shows the 1 km domain of Shimshal catchment (D3), and right panel 1 km domain of Langtang catchment (D5). The catchment outlines are indicated by black contours and glacier outlines of GLDAS dataset (Rodell et al., 2004) by blue contours. (Source: Frontiers of Earth Science)

An appraisal of Himalayan glaciers

From Proceedings of the Indian National Science Academy: “The present review takes stock of the growth of cryospheric research in India with reference to glaciers and snow in the Himalaya, which are sensitive marker of the climate change. Overview of the snout and mass balance data indicates accentuated rate of glacier recession during the 1970’s and 1980’s, particularly in the Central and NE Himalaya. Like elsewhere on the globe, the retreating trends are consistent with the hypothesis of the global warming resulting from the increasing anthropogenic emissions of Green Houses Gasses. In contrast, the Glaciers in the Karakoram region, Indus basin, fed by mid-latitude westerlies, show marginal advancement and/or near stagnation.”

Read the study here.

A view of the Himalaya (Source: orangems/Flickr)

Ice worms

From Proceedings of the Royal Society B: “Disentangling the contemporary and historical factors underlying the spatial distributions of species is a central goal of biogeography. For species with broad distributions but little capacity to actively disperse, disconnected geographical distributions highlight the potential influence of passive, long-distance dispersal (LDD) on their evolutionary histories. However, dispersal alone cannot completely account for the biogeography of any species, and other factors—e.g. habitat suitability, life history—must also be considered. North American ice worms (Mesenchytraeus solifugus) are ice-obligate annelids that inhabit coastal glaciers from Oregon to Alaska.”

Read the study here.

An iceworm (Source: Wikimedia Commons)

Read More on GlacierHub:

New Mountain Bike Trails Highlight Long Island’s Glacier Remnants

To Travel or Not to Travel

New Heights in the Himalayas: High-Altitude Weather Monitoring

Ice Worm Guts Tell a Story of Partnership

Researchers develop new insights into ice worm and bacteria evolution by looking into ice worm digestive tracts.

Deep in their gut, Alaskan ice worms have an average of 10,000 individual bacteria , including one species that until recently had never been discovered, as researchers from the Department of Biological Sciences at the Tokyo Institute of Technology found.

Ice worm s can only survive at temperatures close to freezing. Source: Rutgers University
Ice worm s can only survive at temperatures close to freezing. Source: Rutgers University

Living in ice is no easy feat, but ice worms, relatives of the earth worm and members of the annelid phylum, make it work. The tiny worms burrow through many North American glaciers, surviving in temperatures that would kill most animals. Ice worms cannot be found anywhere else in the world and researchers suspect this is due to the fact that ice worms can only exist within crawling distance of glaciers. Still, some ice worms live on glaciers that were never connected by the Cordilleran ice sheet, posing an interesting conundrum for scientists.

While these one-inch worms can manage living conditions that don’t favor life, they don’t do well in temperatures above freezing. Just a few degrees above freezing is hot enough to kill the creatures, and it’s not a nice death; ice worms will literally melt when it gets too hot, their membranes breaking down. But luckily for them this doesn’t happen too often since they can safely burrow into the depths of glaciers, where temperatures remain fairly constant. They feed on algae that grows on glaciers as well as other forms of organic matter.

Their metabolism is adapted to freezing temperatures and they can go for long stretches without eating – a handy skill in an environment where food can be difficult to find and nutrients are hard to come by.

Part of the secret to ice worms’ survival on glaciers lies in a symbiosis between worm and bacteria. Scientists trekked to the Byron Glacier and Harding Icefield in Alaska where they scooped up worm samples and began their painstaking analysis of contents in worm innards.

They returned to the site three times over a four year period – once in 2010, once in 2011 and again in 2014.

Some of the worms they collected were stored in a solution at -30 degrees Celsius and later dissected, while others were placed – alive – in Petri dishes filled with double distilled water and fasted for as long as two months to flush out any bacteria that were transient inhabitants. After the fasting period, scientists took scalpels to the worms and looked at what was left inside. The starvation process also replicated conditions worms face when food resources are low.

Researchers know that a worm-bacteria symbiosis allows worms to get digestive assistance from their bacteria helpers. With so few food resources available, worms need to get every last nutrient out of their food–mostly hardy algae that grow on the ice surface. Bacteria help break down tougher food molecules that are harder for worms to digest. Meanwhile, bacteria get a (relatively) toasty home in their worm hosts and get meals delivered to them via the worm’s foraging activity.

By separating two worm samples – one that was fed and one that was starved – the researchers were able to discern which bacteria lived inside the worms, and which bacteria got a ‘free ride’ through worm guts and then came out the other end. Any bacteria that were left inside ice worms after months of starvation were likely to be permanent residents in ice worms rather than just passing through with the most recent meal.

Harding Icefield, where ice worms live. Source:  Ianqui Doodle
Harding Icefield, where ice worms live. Source:
Ianqui Doodle

Some of the bacteria microbiologists found in ice worm innards are the same as ones that can be found in soil and other species of worms, but that can’t be found on glacier surfaces, which could suggest that ice worms were not originally ice-dwellers. Earthworms have gut bacteria that help them digest organic matter in soil. At the same time, this allows them to play a role in mixing soil, which has cascading ecological benefits for other species and for the worms as well.

As the ice worms evolved from their terrestrial worm forebears, bacteria would have helped them take advantage of algae on the ice surface by helping the worms digest tougher molecules. This suggests bacteria played a role in the evolution of ice worms, and even that bacteria would have evolved at the same time, making them unique to ice worms.

Among these bacteria, the researchers discovered a new species now named Mollicutes phylotype Ms-13. These bacteria do not exist on the glacier surfaces, which suggests worms are passing the bacteria between one another through a process of eating each others’ feces.

Researchers can use these findings to conduct future research on the role ice worms and their gut bacteria play in shaping a glacial ecosystem and perhaps get some clues about why ice worms only exist in specific parts of North America.

Roundup: A New Documentary, Ice Worms, Timelapse Videos

91jf6joE7XL._SL1500_

 

“Glacial Balance,” A New Documentary by Ethan Steinman on Climate Change

“Water and its sources have historically been the key factor in the establishment of cities, of civilizations. But we are at a critical point in the environment and mankind’s existence. . . GLACIAL BALANCE takes us to Colombia, Argentina, Chile, Bolivia and Ecuador, getting to know those who are the first to be affected by the melting glacial reserve.”

Read more, here

 

A picture of the Sholes Glacier
Photo By, Martin Bravenboer, Via Flicker

 

Glacier Ice Worms Thrive in the Coastal Ranges of the Pacific Northwest

Relying on alga from snowpack to survive, being vulnerable to death from exposure to sunlight, and only being able to move vertically, these worms face many challenges to survival.

Read more, here 

 

 

“Requiem of Ice” Amazing Timelapse Video Shows Melting of the Largest Glacier Cave in the Country

 “The cave systems have been mapped and surveyed since 2011 by Brent McGregor and Eddy Cartaya of the Oregon High Desert Grotto and in that time they have discovered more than a mile of caves and passages beneath the Sandy Glacier.”

A team from Uncage the Soul Productions shot “Requiem of Ice” in two caves named Pure Imagination and Snow Dragon, demonstrating the effect of the changing landscape.

Read more about this story, here

For more on the Sandy Glacier see, “Yes, Glaciers Melt, But Do You Know How?