Hardangerjøkulen: The Real-Life Hoth is Disappearing

Screen Shot 2017-03-08 at 7.10.32 PM
An image from the set of the Empire Strikes Back (Source: Brickset/Flickr).

Any Star Wars fan will recognize the remote ice planet Hoth, the location of some of the most iconic scenes from Episode V: The Empire Strikes Back, including the attack on the Rebel Alliance’s Echo Base by Imperial Walkers and Han Solo’s daring rescue of Luke Skywalker after his tauntaun was attacked by a wampa. Not many people, however, would know that those legendary scenes were filmed on a Norwegian ice cap called Hardangerjøkulen.

When the movie was filmed in 1980, the crew had to cope with subzero temperatures and freezing winds. However, nearly forty years later, the real-life Hoth is disappearing. According to a recent paper by Henning Akesson et al., published in The Cryosphere, the ice cap is extremely sensitive to small changes in temperature, and therefore vulnerable to climate change as global temperatures continue to increase.

Screen Shot 2017-03-08 at 7.11.04 PM
An edge of the Hardangerjøkulen ice cap (Source: Ingolf/Flickr).

Akesson explains in an article for ScienceDirect that due to increasing temperatures, it is feasible that Hardangerjøkulen could fully melt by 2100 if the trends continue. Once it melts, he and his team maintain that the ice cap will never return.

As the authors of the study explain, Hardangerjøkulen is located in southern Norway and measured 73 square kilometers as of 2012. It is generally flat in the interior and has several steeper glaciers along the edge of the ice cap that drain the plateau. Two of these glaciers, Midtdalsbreen and Rembesdalsskaka, have retreated 150 meters and 1386 meters respectively since 1982. Akesson et al. base their study of Hardangerjøkulen on modeling, as opposed to measurements or observations.

The team used a numerical ice flow model to produce a plausible ice cap history of Hardangerjøkulen thousands of years before the Little Ice Age. Using a modelled history of the ice cap, they examined the sensitivity to different parameters. They found that it is “exceptionally sensitive” to changes in temperature. These changes in temperature impact the ice cap’s surface mass balance, which is the gain and loss of ice from a glacier system.

Screen Shot 2017-03-08 at 7.11.17 PM
A sunny view near the summit of Hardangerjøkulen (Source: Martin Talbot/Flickr).

The possible disappearance of Hardangerjøkulen has many implications, including impacting Norway’s tourism and hydropower industries. 99 percent of all power production in Norway comes from hydropower, which depends on glaciers’ water storage and seasonal water flow. Glaciers help contribute to water reservoirs used for the hydropower, and Norway itself contains nearly half of the reservoir capacity in Europe.

The ice cap is also a popular destination for hiking and glacier walking, as well as for Star Wars fans hoping to visit the location of Hoth scenes.

Local residents have remarked on noticeable differences in Hardangerjøkulen. Grete Hovelsrud, a senior researcher at the Nordland Research Institute and vice-president of the Norwegian Scientific Academy for Polar Research, told GlacierHub that the potential loss of Hardangerjøkulen is “very sad.” She added, “It is such a beautiful place. I skied across it last spring, and it really feels like being on top of the world.”

Please follow, share and like us:
error

If a glacier melts on a mountain, does anyone hear it?

In June 2014 the two of us—an anthropologist and an experimental musician, both from Peru– visited Quelccaya, a large glacier high in the Andes. We wanted to record the sounds of its ice as it melted. This trip formed part of our ongoing collaborative project. We are interested establishing new approaches to questions of climate change. The field recordings that we have included in this post present a sonic narration of our encounter with this glacier. They were made with a variety of low- and hi-fi digital and analog recording devices.

Our recordings begin by presenting the soundscape of the back of an open-top cargo truck moving through the Andean landscape. These sounds were recorded during our trip, many hours long, on dusty dirt roads to the community of Phinaya about 80 miles from the city of Cusco.

[slideshow_deploy id=’731′]

Once in Phinaya, we continued to the southwest section of the glacier, where a large, unnamed lake has recently formed. In 2004, this lake burst its banks, creating a flood that affected several families of indigenous herders, along with their animals. We recorded the sounds of a small and the largest tributary streams that flows into this lake. They both offer overlapping sonic forms as they wind their way through gaps between rocks and frozen soil, reverberating with the glacier and rock walls.

We continued on to a small upper stream, where drops of water fell from an icicle and splashed onto a rock. And then we paused to make a sonic image recording right next to one of the biggest faces of the glacier, seeking to capture the way that it absorbs the sounds of a small stream running next to it.


Up on the glacier, we explored a number of ice caves. We experimented with an omnidirectional microphone inside an ice cave five meters wide. We were struck with the dull sound of the water dripping from the top of the cave onto the floor and running both inside and outside the ice cave. We placed a low-fi Dictaphone inside a small ice cave, only 50 cm wide, which created a distortion effect. We used an omnidirectional microphone to a stream running inside the glacier.

As we continued, we found more sounds to record and more ways to experiment with our equipment. We placed an analogue hydrophone under the surface of a small stream, and captured the sounds of tiny rocks that this moving water displaced. And we were able as well to capture the interaction between massive ice blocks with minute ice crystals that fell from the surface of the glacier.

We plan to return to this astonishing soundscape that emerges as climate change drives glacier retreat. Next time, however, we want to bring more equipment and involve people from Phinaya interested in making their own recordings of the glacier. We also look forward to developing ties with other people who are exploring such soundscapes around the world, in the hope that the voice of the glaciers will stimulate an alternative sensorial approach to climate change; namely, one which is not dominated by visuality.

This guest post was written by Gustavo Valdivia and Tomás Tello. If you’d like to write a guest post for GlacierHub, contact us at glacierhub@gmail.com or @glacierhub on Twitter. 

Please follow, share and like us:
error