Roundup: Alpine Hydropower, Water Availability in Pakistan, and Measuring Black Carbon

A case study of the impact of climate change on alpine hydropower

From the journal Water: “Greenhouse gas reduction policies will have to rely as much as possible upon renewable, clean energy sources. Hydropower is a very good candidate, since it is the only renewable energy source whose production can be adapted to demand, and still has a large exploitation margin, especially in developing countries. However, in Europe the contribution of hydropower from the cold water in the mountain areas is at stake under rapid cryospheric down wasting under global warming. Italian Alps are no exception, with a large share of hydropower depending upon cryospheric water. We study here climate change impact on the iconic Sabbione (Hosandorn) glacier, in the Piemonte region of Italy, and the homonymous reservoir, which collects water from ice melt.”

Read more here.

A view of the glacier-fed Lake Sabbione in Italy. (Source: Flickr)

Water availability in Pakistan under Paris Agreement targets

From the journal Advances in Water Resources: “Highly seasonal water supplies from the Himalayan watersheds of Jhelum, Kabul and upper Indus basin (UIB) are critical for managing the world’s largest contiguous irrigation system of the Indus basin and its dependent agrarian economy of Pakistan. Here, we assess changes in the contrasting hydrological regimes of these Himalayan watersheds, and subsequent water availability under the Paris Agreement 2015 targets that aim of limiting the mean global warming to 1.5 °C (Plus1.5), and further, well below 2.0 °C (Plus2.0) relative to pre-industrial level.”

Read more here.

A view of the Indus River Valley (Source: Wikimedia Commons)

Measuring ambient black carbon near India’s Gangotri Glacier

From the journal Atmospheric Environment: “The warming effect of equivalent Black Carbon (EBC) aerosols due to their light absorbing nature is a serious environmental concern, particularly, in the eco-sensitive and glaciated Himalayan region. Moreover, baseline data on BC is rarely available from most of the glaciated Himalayan region. For the first time, measurements on ambient EBC mass concentration were made at a high altitude site Chirbasa (3600 m, amsl), near Gangotri Glacier in the Indian Himalaya, during the year 2016. The change in the EBC concentration over the year was recorded from 0.01 μg m−3 to 4.62 μg m−3 with a diurnal variability of 0.10 μg m−3 to 1.8 μg m−3. The monthly mean concentration of EBC was found to be minimum (0.089 ± 0.052 μg m−3) in August and maximum (0.840 ± 0.743 μg m−3) in the month of May. The observed seasonal mean concentrations of EBC are less than 0.566 μg m−3 whereas the annual mean is 0.395 ± 0.408  μgm−3 indicating a pristine glacial and absence of locality EBC sources. Further, investigation on the occasional high values extricated that the seasonal cycle of EBC was significantly influenced by the emissions resulting from agriculture burning (in western part of the country), forest fires (along the Himalayan slopes) in summer, and to some extent the contribution from long range transport of pollutants in winter, depending the prevailing meteorological condition.

Read more here.

The terminus of Gangotri Glacier, Uttarakhand, India (Source: Wikimedia Commons)

Read more on GlacierHub:

Warming Rivers Are Causing Die-Offs Among Alaska Salmon

The People of the Glacier Lands Taken to Create US National Parks

How Simmering Suspicions Over Mining Threatened Glacier Science In the Andes

Please follow, share and like us:
error

How Mountain-Dwellers Talk About Adapting to Melting Glaciers

For many people, climate change feels like a distant threat—something that happens far away, or far off in the future. Scientists and climate communicators often think that if everyone saw the devastating impacts of climate change, we’d all be more likely to accept it as real, and that accepting climate science is essential to taking action against it. A new study, published this month in Regional Environmental Change, challenges the latter part of this assumption.

The study examined decision-making in three places affected by melting glaciers. For these communities in the Italian Alps, the Peruvian Andes, and the US’s North Cascades, glacier retreat is a visible fact—“and the causes of glacier retreat are almost exclusively warming,” explains lead author Ben Orlove, an anthropologist and co-director of the Center for Research on Environmental Decisions at Columbia University’s Earth Institute. (Orlove is also the managing editor of GlacierHub.)

Orlove and his colleagues wondered whether the people who live in the three locales notice these changes, whether they understand them to be the result of climate change, and whether this climate connection motivates them to take action.

They found that people in these villages are indeed aware of climate change and are even taking action to adapt to it. But the villagers don’t often talk about climate change as a motivation for adapting. Instead, they’re more likely to look closer to home for reasons to respond to the changing environment, focusing on how the responses can benefit their communities. The study suggests one potential way to reframe the conversation around climate adaptation and make it more appealing.

Exploring different frames of mind

Orlove’s team looked at the frames of thinking that mountain-dwellers use to understand the changes happening around them. Mental “frames” help us sort new information and reconcile it with our previous knowledge and beliefs. For example, says Orlove, “If a hydropower plant in the Italian Alps doesn’t get enough water to generate electricity, what kinds of associations do the villagers make when they think or talk about these changes?”

The team examined how mountain-dwellers utilized two frames when talking about glacial retreat. The first was a climate change frame that focuses on global changes and the need for global solutions. The second was a community frame emphasizing action at a local level and recognizing positive opportunities for local advancement, in addition to the negative challenges of environmental change.

By analyzing peoples’ speech patterns during in-depth interviews, focus groups, and in records of community meetings, the researchers investigated how often people in the mountain communities used these two frames when talking about the impacts of climate change.

Different regions, different challenges, similar framing

The study found that villages in all three research sites are undertaking actions that could be described as adaptations to climate change. However, the communities themselves don’t always think of their actions that way. The authors present three cast studies.

Tourism in the North Cascades

Glaciers, rivers, lakes, and snowpack draw tourists to the slopes of Mount Baker in Washington State, providing the major source of income for the towns of Concrete and Glacier. But those natural resources are at risk as the planet’s temperature climbs.

Orlove’s team argues that these communities in the North Cascades are adapting to glacial retreat by finding ways to expand other forms of tourism. One example is through festivals that celebrate historical heritage and wildlife, and help to bring the community together.

A firemen’s muster during the Cascade Days festival in Concrete, Washington. The study authors argue that festivals like this help to attract tourism independent of the area’s disappearing glaciers, and thus could be considered an adaptation to climate change. (Source: Ben Orlove)

However, Concrete and Glacier residents rarely used words associated with the climate change frame when describing the changes or the local response. Instead, they use a community frame, emphasizing the importance of bolstering tourism and supporting livelihoods and the next generation.

“These kids who get out of high school, there’s not much for them to do except go out of town and find a job in [the nearby town of] Mount Vernon or Seattle,” said one interviewee. “Some of them of course go to college, but probably the majority of them don’t. So there’s no real way to make a livelihood up here. We’re dependent on tourism.”

Hydropower in the Italian Alps

As glaciers in the Italian Alps shrink, river levels are declining, reducing the ability of hydropower plants to generate electricity. To keep up with demand, the villages of Trafoi, Stilfs, and Sulden have installed biomass generators that burn wood chips to generate electricity, and the extra heat gets piped into homes.

The researchers found that although residents sometimes describe the wood chips as a renewable resource — a term from the climate change frame — they’re more often to rely on the community frame. Many villagers mentioned liking the wood heat for its coziness, and emphasized that that the wood chips are a local resource that supports local independence. Others mentioned the next generation, noting that the wood chip industry provides local jobs and that the pipes have provided conduits to install fiber optic cables; both of these encourage younger people to stay in their communities rather than seeking a future elsewhere.

Water in the Peruvian Andes

The village of Copa in the Peruvian Andes is also watching its water supply fall. Meanwhile, its need for water has only increased, as warmer temperatures and irregular rainfall make crop irrigation more important.

A village official and his children in Copa, Peru
A village official and his children in Copa, Peru. (Source: Ben Orlove)

To adapt to these changes, Copa has upgraded its water infrastructure to reduce water leakage. It is using concrete to line the canals that carry water from the river, and building pipe systems to bring water into homes instead of hauling buckets from the canal. As with the previous examples, these developments are most often seen through a community frame, with a focus on how the modern water system earns recognition for the village. “They speak with pride of the village square,” says Orlove, “with piped water giving it a more urban look.”

By the numbers

Using both human judgment and computer keyword analysis, Orlove and his team analyzed how often people in these communities referred to environmental changes, whether they attributed these changes to climate change, and whether they described their activities as adaptive responses to the ongoing changes.

They found that the villagers frequently talk about climate change impacts. In interviews, focus groups, and community meetings, changes in ice, water, socioeconomic changes, weather, and agriculture come up in about 13 percent of conversation turns (defined as the words that one person speaks without interruption). “In other words,” the paper notes, “they do not find climate change hard to see.”

However, people linked these alterations to climate change in only 4 percent of the conversation turns, and they describe their actions as adaptive responses in only 5 percent of conversation turns. Overall, people were five times more likely to refer to the community frame than the climate change frame (4.83 percent versus 0.93 percent).

Reframing the conversation

In each of the case studies, communities see the effects of climate change and take steps to address the impacts. Yet they do all of this without making much use of climate change terminology. While the villagers believe in climate change and do occasionally bring it up in conversation, the community is more relevant for them.

To Orlove and his colleagues, this challenges the notion that people need to ‘believe’ in climate change in order to take action against it. Furthermore, the authors write, “it could be argued that the community frame is more effective than the climate change frame because it emphasizes ‘co-benefits’ of adaptation” — such as protecting local resources from outsiders, retaining control over energy production, and increasing one’s connection to their community.

The findings emphasize that climate change communication should be more of a dialogue than a one-way conversation, and that scientists can learn a great deal from the communities they work with.

“It’s not that the only solutions are found in these locally organized communities,” says Orlove, “but people have not often looked for resources there, and when you do, you’ll see that there is social capital. People value their town, and they know each other and interact. They care about their environments and about their communities. We can recognize that as a resource that shouldn’t be overlooked at a time when climate needs far exceed available funds.”

This ability of people to engage with their neighbors and to craft solutions they care about could be helpful outside of mountain villages as well, says Orlove. “If we see self-organizing here, can we see self-organizing in other places, like in New York?”

This article originally appeared on State of the Planet, a news site for Columbia University’s Earth Institute.

Read More on GlacierHub:

Video of the Week: A Stroll Through Myvatnsjokull Glacier

New Funds Help Girls On Ice Canada Expand Access to Glacier Expeditions

The Impact of the GRACE Mission on Glaciology and Climate Science

Please follow, share and like us:
error

Roundup: Glacier Thickness, Hydropower, and Mountain Communities

Measuring Glacier Thickness in Svalbard

From American Geophysical Union: “To this day, the ice volume stored in the many glaciers on Svalbard is not well known… This surprises because of the long research activity in this area. A large record of more than 1 million thickness measurements exists, making Svalbard an ideal study area for the application of a state‐of‐the‐art mapping approach for glacier ice thickness….we provide the first well‐informed estimate of the ice front thickness of all marine‐terminating glaciers that loose icebergs to the ocean.”

Read more about scientific advancements in measuring glacier thickness here.

Monacobreen glacier Svalbard on GlacierHub
The Monacobreen glacier, in Svalbard, calves into the Arctic Ocean (Source: Gary Bembridge/Flickr).

 

Hydropower in Iceland: Opinions of Visitors and Operators

From Journal of Outdoor Recreation and Tourism: “The majority of visitors are against the development of hydropower in Skagafjarðardalir. They believe that the associated infrastructure would reduce the quality of their experience in the region that they value for perceived notions of it being untouched and undeveloped. If the quality of their experience is reduced, so would their satisfaction with that experience.”

Read more about the views regarding the impact of a proposed hydroelectric plant on the tourist experience in Skagafjarðardalir here.

Skagafjörður, Iceland on GlacierHub
A picturesque view of Skagafjörður, one of the sites where the hydroelectric power plant has been proposed (Source: James Stringer/Flickr).

 

8 Experts Explain What Mountain Communities Need Most

From National Science Review:

“What happens [in the Third Pole] can affect over 1.4 billion people and have regional and global ramifications.” – Tandong Yao

“Researchers and the media tend to focus on big glaciers, but it’s the much smaller and much less glamorous glaciers and ice fields that are going to affect mountain communities the most.” – Anil Kulkarni

Read more about future difficulties mountain communities will face, and how they should be addressed here.

Tibetan village in the Himalayas on GlacierHub
A Tibetan village sits at the foot of the Himalayas, with Cho Oyo to the left. Mountain communities like this one are extremely vulnerable to climate change (Source: Erik Törner/Flickr).

Please follow, share and like us:
error

Biodiversity Reversals in Alpine Rivers

A recent study on the Borgne d’Arolla, a glacier-fed stream in the Swiss Alps, shows that there is less biodiversity among macroinvertebrates than expected in the summer and higher biodiversity than expected in the winter. Chrystelle Gabbud, a geologist at the University of Lausanne in Switzerland, and her associates, found that the rates of streambed disturbance in the Borgne d’Arolla were also much more frequent than normal observations of disturbance in glacial rivers, even during times of peak discharge. The team’s results were published in September in Science of the Total Environment and attribute the above biodiversity inversion phenomenon to the increased frequency of flushing events.

The Borgne d’Arolla (Source: bulbocode909/Flickr).

Why is it that glacier-fed rivers in the Alps are experiencing even more flushing events? Evidence points toward the impacts of global climate change, as rising temperatures influence increased glacial melting and sediment production during the summer months, which in turn means that flushing must be facilitated more often.

Summertime runoff in glacier-fed Alpine rivers is exceptionally useful for supplying water for hydroelectric power production. The flow of water is abstracted at water intakes, which hold back both water and sediment, functioning similarly to dams but on a smaller scale. Intakes also have a relatively low threshold for how much sediment can accumulate before they must be flushed. This means that in basins with high erosion, namely glaciated basins, this flushing happens more frequently. In the summer months, when glacial melt is at its peak, flushing of water intakes can occur up to several times a day. Flushing disrupts the streambed, increases water turbidity, contributes to river aggradation, and negatively affects the macroinvertebrate community both in abundance and biodiversity.

Gabbud and fellow researchers collected samples of macroinvertebrates (animals that do not have a backbone but that are large enough to be seen with the naked eye, such as crustaceans, worms and aquatic insects) at several locations over the course of two years (2016 and 2017) to determine the impacts of flushing water intakes on species biodiversity and abundance. The surrounding tributaries served as controls for the Borgne. The researchers’ findings effectively contradicted the normal expectations for seasonal biodiversity changes.  

Normal biodiversity expectations anticipate that both species richness and abundance should be higher during the summer months, from June to September, which also correspond to the highest water temperatures. However, Gabbud and her team found that biodiversity of macroinvertebrate populations in the Borgne d’Arolla during winter months (and coldest water temperatures) was comparable to the expected levels for the surrounding tributaries during the spring and summer. The Borgne was found to be mostly devoid of life in the summer months, a result which the researchers primarily attribute to the high frequency of flushings.

Figure A depicts the geographical location of the study. Terms in bolded black are the locations of each water intake, and red circles indicate sampling stations. Figure B shows the Bertol Inférieur intake (Source: Gabbud et al., 2018).

The team also compared observations in 2016 to those in 2017. Variations in flushing frequency and duration between the two years led Gabbud and her associates to two determinations. One, that more flushing had a direct negative impact on the presence of macroinvertebrate biodiversity and abundance. Two, that flushings with shorter duration also correlated with higher rates of streambed disturbance.

In addition, they found that as the frequency of flushing decreased, macroinvertebrate populations started to return. Outside of the summer months, flushing happens much less frequently. In a four-day period between flushes, biodiversity was almost able to reach pre-disturbance levels.

A graphical abstract, magnifying both a water intake and a macroinvertebrate species downstream (Source: Gabbud et al., 2018).

The researchers’ observations led them to recommend that the frequency of flushing at the water intakes be decreased and the duration of flushing be increased. They stipulate that higher magnitude flushings, resulting from taking too much time between events, could also have negative impacts. Thus, this situation creates a tension between maintaining hydropower and maintaining biodiversity, a major policy issue.

Currently, Switzerland has a single set of regulations regarding mitigating impacts and restoring ecological areas being used for hydropower generation. There are provisions related to sediment management; however, guidance provided by the Swiss National Government does not mention water intakes by name, instead only addressing dams and maintaining sediment connection.

Seeing as water intakes govern over 50 percent “of hydropower impacted rivers by basin area” in the Swiss Alps, Gabbud and her team emphasize that future regulations must incorporate both sediment management and flow management.

Please follow, share and like us:
error

Roundup: Scientific Tensions, Italian Hydropower, and Threatened Biodiversity

Scientific Tensions Among Early Glacier Researchers

From Isis: “Historians of science have long recognized the field as a socially heterogeneous space wherein different groups jostle for access and to assert the priority of their activities… The essay analyzes a dispute between a mountaineer and a scientist-mountaineer that took place at this time, in which the scientist turned to mountaineering ethics to confront accusations of pseudoscience.”

Learn more about the dispute here.

Juneau Icefield Research Project crew, 1949 (Source: American Geographical Society Library, University of Wisconsin–Milwaukee Libraries).

 

Hydropower and Glacier Shrinkage in the Italian Alps

From Applied Energy: “We assess the impacts of nine climate-change scenarios on the hydrological regime and on hydropower production of forty-two glacierized basins across the Italian Alps, assumed exemplary of similar systems in other glacierized contexts.”

Read more about hydropower in the Italian Alps here.

Map of the basins considered in this work. Two of the six basins used for the validation of hydrological model do not have hydropower plants and were therefore not included in the main sample of forty-two basins (Source: Applied Energy).

 

Declining Glacier Cover Threatens Biodiversity

From Global Change Biology: “Climate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold‐water river systems that are responding rapidly to a shrinking cryosphere… Using new datasets from the European Alps, we show significant responses to declining glacier cover for diatoms, which play a critical functional role as freshwater primary producers.”

Learn more here.

Relationship between catchment glacier cover and both within
-site β-diversity, (a) – (c), and between-site β-diversity, (d) – (f) (Source: Global Change Biology).

Please follow, share and like us:
error

Roundup: Snow Sublimation, Indian Hydropower, and Predators

The Importance of Snow Sublimation on a Himalayan Glacier

From Frontiers in Earth Science: “Snow sublimation is a loss of water from the snowpack to the atmosphere. So far, snow sublimation has remained unquantified in the Himalaya, prohibiting a full understanding of the water balance and glacier mass balance. Hence, we measured surface latent heat fluxes with an eddy covariance system on Yala Glacier (5,350 m a.s.l) in the Nepalese Himalaya to quantify the role snow sublimation plays in the water and glacier mass budget. Observations reveal that cumulative sublimation is 32 mm for a 32-day period from October to November 2016, which is high compared to observations in other regions in the world.”

Read more here.

Yala Glacier (left peak) in the Langtang Valley, Rasuwa, Nepal (Source: Scott Mattoon/Flickr).

 

Hydropower Production in India under Climate Change

From Nature: “Hydropower is a valuable renewable energy resource in India, which can help in climate change mitigation and meet the increasing energy demands. However, the crucial role of climate change on hydropower production in India remains unexplored. Here using the observations and model simulations, we show that seven large hydropower projects experienced a significant (p-value < 0.05) warming and a decline in precipitation and streamflow during the observed period of 1951–2007.”

Read more here.

Bhakra Nangal Dam in August, 2008 (Source: Kawal Singh/Creative Commons).

 

Resolving the Predator First Paradox

From Molecular Ecology: “Primary succession on bare ground surrounded by intact ecosystems is, during its first stages, characterized by predator‐dominated arthropod communities. However, little is known on what prey sustains these predators at the start of succession and which factors drive the structure of these food webs. As prey availability can be extremely patchy and episodic in pioneer stages, trophic networks might be highly variable. Moreover, the importance of allochthonous versus autochthonous food sources for these pioneer predators is mostly unknown. To answer these questions the gut content of 1832 arthropod predators… were screened molecularly to track intraguild and extraguild trophic interactions among all major prey groups occurring in these systems. ”

Read more here.

A map of the stydy locations, with yellow lines marking glacial positions (Source: Sint et al.).

Please follow, share and like us:
error

Roundup: A Soldier’s Mother, Hydropower, and Supraglacial Ice Melt

Mother with a Heart of Gold at Siachen Glacier

From Mid-Day.com: “A school teacher and mother of a soldier was so inspired by the sacrifices made by the country’s jawans, that she decided to make one of her own. Pune resident, Sumedha Chithade, 54, has sold her ancestral gold bangles to raise funds to build an oxygen plant for soldiers posted at Siachen Glacier.”

Read the news here.

Sumedha Chithade, the mother of a soldier, who sold her ancestral jewelry to help other soldiers at Siachen Glacier (Source: Midway.com).

 

Controversial Hydropower Along a Trans-Himalayan River

From Water Policy: “Teesta is one such mighty trans-Himalayan river flowing through India and Bangladesh and is recognized as a basin where there is increasing tension between these two nations. Due to upstream interventions including barrage, dam and hydropower construction, the lower riparian region of Bangladesh faces acute water stresses, which hampers the agricultural, fisheries and livelihood activities of the river-dependent communities and impedes the economic prosperity of the greater North-west region. The study provides a robust outline of the transboundary nexus between India and Bangladesh, and identifies upstream intervention-induced economic loss and ecological deterioration in the lower Teesta basin.”

Learn more about the controversy here.

Teesta a mighty trans-Himalayan river flowing through India and Bangladesh (Image: Source)
Teesta, a mighty trans-Himalayan river flowing through India and Bangladesh (Image: (Source: Akuppa John Wigham/Flickr).

 

What Makes Supraglacial Ice Melt Faster?

From PNAS: “Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite their importance as melt hot spots, their life cycle is little understood. Early field observations had advanced a hypothesis of survival of north-facing and disappearance of south-facing cliffs, which is central for predicting the contribution of cliffs to total glacier mass losses.”

Find out more here.

High Mountain Asia, the Tibetan Plateau (Image: Source)
High Mountain Asia, the Tibetan Plateau (Source: DaiLuo/Flickr).

 

 

Please follow, share and like us:
error

Asia’s High Glaciers Protect Communities from Drought

A recent study in Nature by Hamish Pritchard, a glaciologist at Cambridge University and researcher for the British Antarctic Survey, shows that the high mountains of Asia, including the Himalayas, the Hindu Kush, and Karakoram, are being greatly affected by global warming. In some areas of the Himalayan region, for example, temperatures have risen faster than the global average. From 1982 to 2006, the average annual mean temperature in the region increased by 1.5 °C, with an average increase of .06 °C per year, according to UNEP. Even though studies on the high mountains of Asia are incomplete, it is believed that the mountains will lose half of their ice in the next 30 years.

Farmers in Pakistan are shifting from wheat to cope with the droughts (Source: Muhammad Darjat/Google Images).

This glacial loss has consequences for Asia as the glaciers provide an important ecosystem service to 800 million people by acting as a regional buffer against drought and providing summer meltwater to rivers and aquifers. If the glaciers in the eastern and central Himalayas disappear by 2035, the ecosystem service protecting against drought would be lost. Despite the fact that glaciers can promote drought resiliency, the surrounding areas would be particularly vulnerable to water scarcity because the glaciers will not supply enough meltwater to maintain the rivers and streams at adequate levels.

Lack of water could lead to devastating food shortages and malnutrition, further impacting the economy and public health. Based on a projected estimate of glacier area in 2050, it is thought that declining water availability will eventually threaten some 70 million people with food insecurity. Droughts in the Himalayan region have already resulted in more than 6 million deaths over the past century. Glacier loss would only add to drought-related water stress in the region, impacting a surrounding 136 million people.

In an interview with GlacierHub, Pritchard explained, “Without these glaciers, particularly in the Indus and Aral, droughts would be substantially worse in summer than they are now, and that could be enough to drive conflict and migration, which becomes a regional and potentially global issue. It could result in social instability, conflict, and migrations of populations.”

According to Pritchard’s research, the high mountains of Asia supply 23 cubic kilometers of water downstream every summer. If the glaciers were to vanish, the amount of water during the summer would decrease by 38 percent in the upper Indus basin on average and up to 58 percent in drought conditions. The loss of summer meltwater would have its greatest effects on the municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan, with water stress being classified as medium to extremely high. For example, the Indus River, which has one of the world’s largest irrigation networks, is Pakistan’s primary source of freshwater. About 90 percent of Pakistan’s agriculture depends on the river and much of the world’s cotton comes from the Indus River Valley. Additionally, decreased meltwater would further affect upstream countries such as Kyrgyzstan, Tajikistan and Nepal that rely on hydropower. The Toktogul hydropower plant and four smaller plants downstream produce almost 80 percent of Kyrgyzstan’s electricity.

An irrigation system in the Indus basin in Pakistan (Source: GRID Arendal/Creative Commons).

Pritchard presents data that show how much the glacier meltwater contributes to different regions within Asia during drought. Some areas, such as the Aral Sea, rely exclusively on the glacier water during the drought months. The glaciers provide meltwater when rainfall is minimal or nonexistent under drought conditions because glaciers store precipitation for decades to centuries as ice, which then flows to lower altitudes when melting in the summer. Twila Moon, a postdoctoral research associate at the U.S. National Snow and Ice Data Centre in Boulder, Colorado, recently discussed the consequences of global glacier volume loss on populations worldwide in Science magazine. “Rising seas, to which melting ice is a key contributor, are expected to displace millions of people within the lifetime of many of today’s children,” she stated. “This loss of Earth’s land ice is of international concern.”

As temperatures continue to rise, the surrounding regions will begin to lose their source of water for food, agriculture and survival. Due to inadequate scientific studies and evidence, the trends and status of glaciers in the Himalayas and other ranges are not being sufficiently observed and recorded. A lack of adequate monitoring of the glaciers means political action to adapt to the foreseen changes will be limited. More communication between the scientific community and policymakers is needed to relay knowledge about the impacts of changes in glaciers on the region’s hydrology, environment and livelihoods.

Please follow, share and like us:
error

Hardangerjøkulen: The Real-Life Hoth is Disappearing

Screen Shot 2017-03-08 at 7.10.32 PM
An image from the set of the Empire Strikes Back (Source: Brickset/Flickr).

Any Star Wars fan will recognize the remote ice planet Hoth, the location of some of the most iconic scenes from Episode V: The Empire Strikes Back, including the attack on the Rebel Alliance’s Echo Base by Imperial Walkers and Han Solo’s daring rescue of Luke Skywalker after his tauntaun was attacked by a wampa. Not many people, however, would know that those legendary scenes were filmed on a Norwegian ice cap called Hardangerjøkulen.

When the movie was filmed in 1980, the crew had to cope with subzero temperatures and freezing winds. However, nearly forty years later, the real-life Hoth is disappearing. According to a recent paper by Henning Akesson et al., published in The Cryosphere, the ice cap is extremely sensitive to small changes in temperature, and therefore vulnerable to climate change as global temperatures continue to increase.

Screen Shot 2017-03-08 at 7.11.04 PM
An edge of the Hardangerjøkulen ice cap (Source: Ingolf/Flickr).

Akesson explains in an article for ScienceDirect that due to increasing temperatures, it is feasible that Hardangerjøkulen could fully melt by 2100 if the trends continue. Once it melts, he and his team maintain that the ice cap will never return.

As the authors of the study explain, Hardangerjøkulen is located in southern Norway and measured 73 square kilometers as of 2012. It is generally flat in the interior and has several steeper glaciers along the edge of the ice cap that drain the plateau. Two of these glaciers, Midtdalsbreen and Rembesdalsskaka, have retreated 150 meters and 1386 meters respectively since 1982. Akesson et al. base their study of Hardangerjøkulen on modeling, as opposed to measurements or observations.

The team used a numerical ice flow model to produce a plausible ice cap history of Hardangerjøkulen thousands of years before the Little Ice Age. Using a modelled history of the ice cap, they examined the sensitivity to different parameters. They found that it is “exceptionally sensitive” to changes in temperature. These changes in temperature impact the ice cap’s surface mass balance, which is the gain and loss of ice from a glacier system.

Screen Shot 2017-03-08 at 7.11.17 PM
A sunny view near the summit of Hardangerjøkulen (Source: Martin Talbot/Flickr).

The possible disappearance of Hardangerjøkulen has many implications, including impacting Norway’s tourism and hydropower industries. 99 percent of all power production in Norway comes from hydropower, which depends on glaciers’ water storage and seasonal water flow. Glaciers help contribute to water reservoirs used for the hydropower, and Norway itself contains nearly half of the reservoir capacity in Europe.

The ice cap is also a popular destination for hiking and glacier walking, as well as for Star Wars fans hoping to visit the location of Hoth scenes.

Local residents have remarked on noticeable differences in Hardangerjøkulen. Grete Hovelsrud, a senior researcher at the Nordland Research Institute and vice-president of the Norwegian Scientific Academy for Polar Research, told GlacierHub that the potential loss of Hardangerjøkulen is “very sad.” She added, “It is such a beautiful place. I skied across it last spring, and it really feels like being on top of the world.”

Please follow, share and like us:
error

Roundup: Volcanoes, Cryoseismology and Hydropower

Roundup: Kamchatka, Cryoseismology and Bhutan

 

Activity in Kamchatka’s Glacier-Covered Volcanoes

From KVERT: “The Kamchatka Volcanic Eruption Response Team (KVERT) monitors 30 active volcanoes of Kamchatka and six active volcanoes of Northern Kuriles [both in Russia]. Not all of these volcanoes had eruptions in historical time; however, they are potentially active and therefore are of concern to aviation... In Russia, KVERT, on behalf of the Institute of Volcanology and Seismology (IVS), is responsible for providing information on volcanic activity to international air navigation services for the airspace users.” Many of these volcanoes are glacier-covered, and the interactions between lava and ice can create dramatic ice plumes. Sheveluch Volcano currently has an orange aviation alert, with possible “ash explosions up to 26,200-32,800 ft (8-10 km) above sea level… Ongoing activity could affect international and low-flying aircraft.”

Read more about the volcanic warnings here, or check out GlacierHub’s collection of photos from the eruption of Klyuchevskoy.

Klyuchevskoy, one of the glacier-covered volcanoes in Kamchatka that KVERT monitors, erupting in 1993. (Source: Giorgio Galeotti/Flickr)
Klyuchevskoy, a glacier-covered volcano monitored by KVERT, erupting in 1993 (Source: Giorgio Galeotti/Creative Commons).

 

New Insights Into Seismic Activity Caused by Glaciers 

In Reviews of Geophysics: “New insights into basal motion, iceberg calving, glacier, iceberg, and sea ice dynamics, and precursory signs of unstable glaciers and ice structural changes are being discovered with seismological techniques. These observations offer an invaluable foundation for understanding ongoing environmental changes and for future monitoring of ice bodies worldwide… In this review we discuss seismic sources in the cryosphere as well as research challenges for the near future.”

Read more about the study here.

The calving front of an ice shelf in West Antarctica as seen from above (Source: NASA/Flickr)
The calving front of an ice shelf in West Antarctica (Source: NASA/Creative Commons).

 

The Future of Hydropower in Bhutan

From TheThirdPole.net: An interview with Chhewang Rinzin, the managing director of Bhutan’s Druk Green Power Corporation, reveals the multifaceted challenges involved in hydropower projects in Bhutan. These challenges include the effect of climate change on glaciers: “The glaciers are melting and the snowfall is much less than it was in the 1960s and 70s. That battery that you have in a form of snow and glaciers up there – which melts in the spring months and brings in additional water – will slowly go away…But the good news is that with climate change, many say that the monsoons will be wetter and there will be more discharge,” said Rinzin.

Check out the full interview with Chhewang Rinzin here. For more about hydropower in Bhutan, see GlacierHub’s earlier story.

Hydropower plants are common in rivers fed by melting ice and snow in the Himalayas (Source: Kashyap Joshi/Wikimedia Commons)
A hydropower plant common in rivers fed by melting ice and snow in the Himalayas (Source: Kashyap Joshi/Creative Commons).

Please follow, share and like us:
error

Himalayan Region Considers Climatic Threat to Hydropower Future

Glacial melt is threatening the Hindu Kush Himalayan region’s development of potential hydropower. A recent forum convened by the Kathmandu-based organization International Centre for Integrated Mountain Development (ICIMOD) highlighted the climatic and social challenges that accompany the establishment and sustainability of the region’s hydropower sector.

The Sept. 1 event event, “Managing climate and social risks key to hydropower development,” held in Stockholm, Sweden, was co-organized with the Stockholm International Water Institute, in addition to the research and consulting organization FutureWater and Statkraft, a Norwegian state-owned hydropower company.

The Hindu Kush Himalayan region has nearly 500 GW hydropower potential, but only a fraction of it has been developed, despite the “increased climatic and social risks” this problem creates, according to ICIMOD. 

“There is a need to manage risks so that the mountains and the plains derive sustainable benefits from the region’s rich hydropower potential,” said David Molden, the Director General of ICIMOD, according to the organization’s media release.

David Molden, the Director General of ICIMOD, speaks at the September conference. (Photo courtesy Udayan Mishra/ICIMOD).
David Molden, the Director General of ICIMOD, speaks at the September conference. (Photo courtesy Udayan Mishra/ICIMOD).

The Asian mountain range extends across eight countries, from Afghanistan into Myanmar. Collectively, the biodiverse region, with 10 major river basins, directly supports the livelihoods of more than 210 million mountain inhabitants. The Hindu Kush Himalayan region, sometimes called HKH, also has the highest concentration of snow and glaciers outside the polar region, with 54,252 glaciers identified last year — meaning 1.4 percent of the region is glaciated.

Glacial retreat, onset by the impacts of climate change and warming atmospheres, varies, but has been observed across all HKH glaciers in the last few decades. Overall, the decrease in glacial mass in this region over the last several decades has been among the most pronounced worldwide.

“This surely is one of the most vulnerable regions,” said Molden during a video interview at the event.

“It is highly vulnerable to climate change and the people in the mountains are not the ones emitting the greenhouse gases, but really the ones paying the price for climate change. Some of the issues we are seeing are melting ice, permafrost… changes in rainfall patterns that will make a big difference in this region… we really have to pay attention to the area.”

Over 80 percent of the glaciers in the Himalayas have not been researched, as GlacierHub previously reported.

A view of the Nepalese Himalayas along the HKH. (Photo courtesy Flickr).
A view of the Nepalese Himalayas along the HKH. (Photo courtesy Flickr).

Glacial Lake Outburst Floods (GLOFs) in the area, along with landslides, have also increased in recent years, placing “existing and planned hydropower plants at risk,” according to the organization.

While the Indian Himalayas has the potential to produce 150,000 MW of hydropower each year, only 27 percent of that power has actually been developed. In Nepal, only 2 percent of the region’s hydropower sources are utilized.

Companies at the September meeting expressed concern about a number of risks in generating hydrpower in the region, Molden said in the video interview. The first step, he explained, is understanding the challenges. These include tracking changes in hydrology water resources that come from glacial melt. While melting glaciers increase water flows in rivers  for short periods of time, their contribution to river systems will gradually lessen.

There are also challenges related to GLOFs, and the damage the outburst floods could inflict on hydropower plants.

Aditi Mukherji, ICIMOD’s theme leader in water and air, spoke at at the meeting, presenting on how while hydropower is produced in the mountains of India, for example, mountain people there do not always receive direct commensurate benefits from the production of the energy sources. The consultation of communities in the construction of hydropower plants was also highlighted as another ongoing issue.

Presenters at the session on "Mountains, glaciers and hydropower in a changing climate" in Stockholm. (Photo courtesy Udayan Mishra/ICIMOD).
Presenters at the session on “Mountains, glaciers and hydropower in a changing climate” in Stockholm. (Photo courtesy Udayan Mishra/ICIMOD).

Martin Hornsberg, of Statkraft, also presented at the conference, discussing how many run-off-river hydropower plants in the Himalayas depend largely on the current available surface runoff. Some ongoing challenges include deciding which emission scenarios should be assumed, as well as which climate models should be considered.

His presentation explained how hydropower plants will likely be impacted by a future decrease of water discharge and run off during the dry seasons, possibly also the wet seasons, in a worst case scenario that Hornsberg laid out for conference participants. He suggested that reservoirs would be helpful to balance inflow, but would “require more investment, have a larger impact on the environment and on local communities.”

The September event came at the end of World Water Week, created to serve as a focal point for global water issues.

Please follow, share and like us:
error

Military intervention at Nepal’s fastest growing glacial lake

Ten kilometres south of Mount Everest lies Nepal’s “fastest-growing glacier lake”— Imja Tsho. In March 2016, acting to mitigate potential threats the lake might pose to over 96,000 people downriver, the Nepalese Army began installing syphons to lower the water level by 10 feet (3 m).

The army’s engineering department, commissioned by Nepal’s Department of Hydrology and Meteorology (DHM), is now conducting “the highest altitude disaster risk mitigation work ever performed by any army in the world,” according Lt Col Bharat Lal ShresthaLocally, the remediation will bolster the confidence of flood-prone communities, and is likely to assuage fears of downstream developers, which have been concerns elsewhere in the region.

The soldiers can only work two to three hours a day, due to the thin air, and strain of working at 16,400 feet (5,000 m). The project aims to safeguard lives, livelihoods, and infrastructure throughout Solukhumbu District — home to Mount Everest and the major religious site of Tengboche Monastery — as well as further downstream.

The United Nations Development Programme (UNDP) and Global Environment Facility (GEF) — the world’s largest fund addressing environmental issues — are financing the US$7.2 million remedial works at Imja Tsho,  often cited as an especially dangerous lake. This has been reinforced by local perceptions and its proximity to Everest’s trekking routes.

Imja Tsho and the surrounding Everest region (Source: NASA Earth Observatory, annotated)
Imja Tsho and the surrounding Everest region (Source: NASA Earth Observatory, annotated by Sam Inglis, GlacierHub)

A report by the  BBC in June 2016 claimed that the 2015 Gorkha earthquakes “may further have destabilised” the lake. However, the results of ’Rapid Reconnaissance Surveys’ made public in December 2015 revealed “[Imja] showed no indication of earthquake damage when viewed either by satellite or by a helicopter.

The UNDP and GEF’s selection of Imja pivots on a single study by International Centre for Integrated Mountain Development (ICIMOD) from 2011, which defies much of the preceding and independent research on the lake. ICIMOD is an intergovernmental agency headquartered in Kathmandu, researching Nepal’s glaciers and mountains hazards and also involved  in the current engineering works.

Studies by Japanese, British and American teams concluded that the surrounding topography shelters Imja from mass movements. ICIMOD deprioritized Imja’s status. Their 2011 national report stated, “[despite] the apparently alarming rate of [Imja Tsho’s] expansion…the danger of outburst came to be regarded as far less than originally expected.” Concurring with the international researchers, they also ruled out the possibility of a GLOF-triggering ice avalanche as ”[not] very likely.”

The lead authors of the 2011 study subsequently gave compelling evidence in 2015 for remediation at another glacial lake — Thulagi Tsho. Narendra Raj Khanal and six colleagues from ICIMOD revealed Thulagi posed a “high risk.” Over 164,000 people would be directly impacted by a Glacial Lake Outburst Flood (GLOF), with a further 2 million indirectly exposed — four times the number at Imja. Threats to hydropower facilities were a key concern highlighted by UNDP and GEF. However, there are six hydropower projects below Thulagi, and one below Imja.

Imja is being drained 10 feet (3 m) over 4 years — costing nearly US$7 per gallon. However, research led by the University of Texas has shown that this minor reduction would have a negligible impact on a GLOF. Daene McKinney and Alton Byers also stated that it offered an insignificant “3 percent risk reduction.”

Imja Tsho presently covers 135 ha (1.35 km2), holding nearly 20 billion gallons (75.2 million m3) of meltwater — enough water to meet all New York State’s water needs for nearly two and a half days. It is fed by Imja Glacier, which has wasted 1.4 miles (2.2 km) over less than 40 years. Imja Glacier has “exhibited the largest loss rate in the Khumbu region,” according to research by the University of Texas and The Mountain Institute.

The evolution of Imja Tsho from 1976-2016 (Source: USGS Landsat Archive)
The evolution of Imja Tsho from 1976-2016 (Source: USGS Landsat Archive)

Nepal began inventorying its glaciers and glacial lakes in earnest in 1999 — “after global warming had become a sexy topic,” claimed independent observer Seth Sicroff. ICIMOD publishing the findings in 2001. They detected 2,323 glacial lakes, classifying twenty — less than one percent —as “potentially dangerous.”

GLOFs, which typically occur when a dam barring a glacial lake fails, gained greater attention as a point of investigations in the 1980s, following a catastrophic outburst at Dig Tsho. At the “request” of Khumbu residents, German geoscientists Wolfgang Grabs and Joerg Hanisch travelled to the Everest region in 1993 to study local glacial hazards, and establish an hazard assessment criteria. They speculated that syphoning water, and lowering the level by 16.4 feet (5 m) could “stabilize” lake against overtopping surge waves pouring over the dam.

The syphon was first adopted at Tsho Rolpa — Nepal’s largest glacial lake — in May 1995. By 1998, following 4 years of investigations, Professor John Reynolds — then-chief technical adviser on glacial lakes to the Nepalese government — designated it the “most dangerous glacial lake in Nepal.”

A repeat of the 1985 GLOF has long been feared in Rolwaling Valley — a mere 6 miles (10 km) east of Dig Tsho. The DHM projected Tsho Rolpa could release of over 8 billion gallons (30 million m3) of meltwater — threefold the volume of 1985 GLOF, and equivalent to the volumes of 12,000 olympic swimming pools. Over 10,000 local inhabitants, and US$22 million-worth of infrastructure and property as far as 62 miles (100 km) down-valley, were thought to be threatened.

In 2013, a Japanese research team revealed that the “potential flood volume” at Tsho Rolpa has tripled, and is now closer to 23.6 billion gallons (89.6 million m3).

By July 2000, a 13 foot (4 m) US$3.1 million spillway had been constructed, reducing the water level by 9-13 feet (3-4 m). Reynolds recommended that engineering works be continued until the lake level was 49-65 feet (15-20 m) below its 1998 level. Five DHM experts and Reynolds co-authored a paper emphasising, “While the lowering of the lake level by [9.8 feet] 3 m [was] expected to reduce the risk of GLOF, it is not a permanent solution.” Their explicit intention was to continue lowering in the “near future,” as soon as funds were allocated for disaster mitigation in Nepal.

Sluice gate at Tsho Rolpa (Source: Brian Collins/USGS)
Sluice gate at Tsho Rolpa (Source: Brian Collins/USGS)

Funds were never found and, in the early 2000s, Maoist insurgents infiltrated the area. They dismantled Tsho Rolpa’s ‘Community-Based Early Warning System’ (CBEWS) in 2002. It was not until 2012 — a decade after the insurgence had been quelled — that replacements were pledged. The CBEWS was expected to be back online in early 2016.

A misplaced “trust in western technology” resulted in locals complacently believing there was “no further danger,” according to anthropologist Dr Janice Sacherer of the University of Maryland. This sentiment persists, and no further work has been budgeted for Tsho Rolpa in the near future. This is largely attributable to the limited funds available to the DHM, who receive a bulk of their funding from international NGOs, aid agencies and foreign governments.

It has been long been hoped that funds would be diverted to counter the immediate threat posed by Tsho Rolpa. The UNDP’s 2013 technical report stated 141,911 people within 62 miles (100 km) of Tsho Rolpa are exposed to the direct impacts of a GLOF, compared to the 96,767 living 75 miles (120 km) below Imja Tsho. However, the UNDP report justifies its decision to focus on Imja by revealing that the economic toll through lost revenue at Imja would be US$8.98 billion — nearly four times that downstream of Tsho Rolpa.

In 2007, under-development of the Rolwaling Valley was attributed, at least in part, to the omnipresent threat of a massive GLOF.

With a US$7.2 million price-tag, a military cohort that can only work a few hours a day, other sites requiring more immediate attention, and the syphoning method being deemed a “Band-Aid solution,” only time will tell if the money and effort expended on Imja Tsho were warranted.

Please follow, share and like us:
error