Study Assesses Efficacy of Artificial Glaciers in Alleviating Water Scarcity in Ladakh, India

This month, Regional Environmental Change published a study that analyzes the “socio-hydrology” of the artificial ice reservoirs, commonly called “artificial glaciers,” of Ladakh, a high mountain region located in the area known as the Trans-Himalaya. The study assesses the effectiveness of these structures as a strategy of adaptation to seasonal water shortages and to the effects of climate change on the glaciers of the Himalaya, which the Ladakhi rely on for water to irrigate agriculture.

Why Artificial Glaciers?

Ladakh has always experienced seasonal water scarcity, according to Marcus Nüsser, a co-author of the study. Nüsser told GlacierHub, “Water scarcity issues are frequent and an annual phenomenon in Ladakh because of the complete dependence of irrigated agriculture from meltwater, especially from the glaciers.” Since the glaciers reside at a much higher altitude than the villages, “the meltwater from these water sources comes quite late in the year. And so there’s a regular problem of severe water scarcity every year in those months when sowing of the cultivated plants starts,” that is, in early spring.

Climate change has increased water shortages in mountain regions worldwide, according to another study published last month. Artificial glaciers help to alleviate seasonal water shortages by storing meltwater from winter months in ice structures at an altitude lower than the natural glaciers and higher than the cultivated fields. There are several different types of artificial glaciers, which are described later in this article. Due to their lower altitude, these stores of ice melt earlier than the natural glaciers, “providing irrigation just in time for the start of the agricultural season,” as Nüsser writes in his chapter of the 2016 book Ethnic and Cultural Dimensions of Knowledge, titled, “Local Knowledge and Global Concerns: Artificial Glaciers as a Focus of Environmental Knowledge and Development Interventions.”

Artificial glaciers provide water right when farmers need it for irrigation. (Source: Marcus Nüsser)

How They Work

Constructed ice reservoirs, along with water management systems, have long been in Ladakh’s technological repertoire. According to Nüsser’s chapter of Ethnic and Cultural Dimensions of Knowledge, Ladakh “has a long history of water harvesting and community management of water resources.” This history includes tanks for storing meltwater, called zings, as well as an official called a Chudpon who “ensures equitable distribution of water.” The chapter notes the practice of “birthing glaciers” by placing pieces of glaciers in caves at high altitudes found in the Gilgit-Baltistan region of northern Pakistan. The Regional Environmental Change study further mentions the tradition of “snow harvesting,” which involves building small barrier walls.

Since then, four types of modern ice reservoirs have been developed, as identified by Nüsser and his coauthors:

The types of ice reservoirs, as identified by Nüsser and his coauthors (Source: Regional Environmental Change)

Basin structures store ice similarly to how traditional zings store water. While zings are generally built around the same level as fields, basins for ice storage are located at altitudes higher than cultivated fields so that water can freeze. The advantage of ice basins over zings, and the advantage of ice reservoirs over water reservoirs, is that evaporation is minimized and so more water is retained.

A second type of ice reservoir involves building a sequence of loose rock walls into a river. This slows down water velocity enough that the water freezes in layers. This type of structure, called a “cascade,” was first created in 1987 and was the first structure to be called an “artificial glacier.”

A third type of artificial glacier diverts stream water to freeze in small, shaded side valleys. This strategy also relies on reducing the velocity of river water.

The most recently developed type of artificial glacier, the Ice Stupa, was highlighted in a New Yorker photo essay last month. An Ice Stupa uses piping to divert stream water. The water is shot upwards through a sprinkler and freezes in vertical layers in a conical structure that resembles Buddhist stupas. Due to their vertical shape, ice stupas have less surface area exposed to sunlight, and so they can reside at altitudes as low as the villages themselves while remaining frozen through the winter. A challenge of the Ice Stupa, Nüsser told GlacierHub, is that since they rely on pipes, “they need a relatively sophisticated intake system that is not blocked during the cold seasons.” Developed by Sonam Wangchuk, the Ice Stupa won the Rolex Award for Enterprise in 2016.

Reception of Ice Reservoirs

Ice reservoirs are not always successful, according to Nüsser and the recent study. Success depends on “the situation during the wintertime, whether or not ice accumulation is successful,” Nüsser told GlacierHub. The study cites “high inter-annual climatic variability, frequency, and duration of freeze-thaw cycles together with variances in design” for this irregularity.

Further, Nüsser explained, artificial ice reservoirs are only implementable in a very specific environment–that is, a “cold, arid environment… where you have extremely low temperatures during the wintertime because of the high altitude, the position, and where you have on the other hand a very arid situation.” A local climate must include “frequent freeze-thaw cycles to have the successful formation of large quantities of ice. That’s why you cannot use such systems in every area where you have irrigated cultivation.” Still, there are enough places that meet this description that ice reservoir technology has the potential to spread to other locations. Nüsser told GlacierHub, “I’m sure there are possibilities to transfer this technology, for example, to other trans-Himalyan regions,” and possibly to “parts of Bolivia, maybe, parts of Peru, or northern Chile.”

However, as Nüsser and his coauthors point out, support for ice reservoirs is not unanimous. Storing meltwater in the form of ice to service upstream communities in Ladakh deprives downstream communities of this water. According to the study, “There have been protests against the [Ice Stupa] project as it abstracts water from the main stream, thereby reducing water availability for downstream communities and households.”

Presented as an appropriate method of adaptation to global warming, artificial glaciers have received considerable attention. The home page of the website for the Ice Stupa Project reads, “Join Ladakh as it gears up to fight climate change and melting glaciers.” The Regional Environmental Change study observes that although the Ice Stupa Project was the costliest ice reservoir initiative to date, the project was able to receive its funds through crowdsourcing by “promoting these structures in the context of global climate change.”

The authors of the study, though, do not see artificial glaciers as an appropriate method of adaptation to climate change. Nüsser reasonably suggests that the term “artificial glacier” be jettisoned in favor of “artificial ice reservoir.”

“It’s not really a glacier,” Nüsser told GlacierHub. “It’s just a seasonal storage of water in the form of ice to increase meltwater availability in the early season.” Unlike natural glaciers, ice reservoirs only remain frozen for part of the year, and so ice does not accumulate from year to year. “They can not replace the natural glaciers,” he said.

His study, of course, echoes this conclusion: “It is important to see them as site-specific water conservation strategies rather than climate change adaptation, which is neither their original function, nor something they are likely to accomplish.”

Although they do not match the expectations that the term “artificial glacier” may raise, artificial ice reservoirs do, overall, succeed in supplying much needed water to farmers at a critical point in the growing season, according to Nüsser and the study. Storing ice in these structures “helps the farmers to increase the number of irrigation cycles for the cultivated fields.” The aid in water supply allows farmers to “cultivate cash crops like potatoes, in the case of Ladakh, and they can make some more income from these agricultural productions.”

Ice reservoirs alleviate water shortages in upstream communities in the short term, the study concludes, but these ice structures will not slow the effects of climate change on natural glaciers. If glaciers disappear, then there will be no meltwater to be stored in the artificial ice reservoirs. Nüsser told GlacierHub, “In the context of global warming, we have to imagine a time when there is no meltwater available.” For now, though, these artificial ice reservoirs help the farmers of Ladakh and provide an example of creative adaptation to immediate strains caused by global warming.

This artificial glacier resides above the village of Igu in Ladakh. (Source: Marcus Nüsser)

Read More on GlacierHub:

Video of the Week: Work Inspired by John Ruskin

Project Pressure Exhibition Explores Climate Change and Glaciers

Roundup: UNESCO Sites, Artificial Glaciers, and Alexander von Humboldt

Please follow, share and like us:
error

Asia’s High Glaciers Protect Communities from Drought

A recent study in Nature by Hamish Pritchard, a glaciologist at Cambridge University and researcher for the British Antarctic Survey, shows that the high mountains of Asia, including the Himalayas, the Hindu Kush, and Karakoram, are being greatly affected by global warming. In some areas of the Himalayan region, for example, temperatures have risen faster than the global average. From 1982 to 2006, the average annual mean temperature in the region increased by 1.5 °C, with an average increase of .06 °C per year, according to UNEP. Even though studies on the high mountains of Asia are incomplete, it is believed that the mountains will lose half of their ice in the next 30 years.

Farmers in Pakistan are shifting from wheat to cope with the droughts (Source: Muhammad Darjat/Google Images).

This glacial loss has consequences for Asia as the glaciers provide an important ecosystem service to 800 million people by acting as a regional buffer against drought and providing summer meltwater to rivers and aquifers. If the glaciers in the eastern and central Himalayas disappear by 2035, the ecosystem service protecting against drought would be lost. Despite the fact that glaciers can promote drought resiliency, the surrounding areas would be particularly vulnerable to water scarcity because the glaciers will not supply enough meltwater to maintain the rivers and streams at adequate levels.

Lack of water could lead to devastating food shortages and malnutrition, further impacting the economy and public health. Based on a projected estimate of glacier area in 2050, it is thought that declining water availability will eventually threaten some 70 million people with food insecurity. Droughts in the Himalayan region have already resulted in more than 6 million deaths over the past century. Glacier loss would only add to drought-related water stress in the region, impacting a surrounding 136 million people.

In an interview with GlacierHub, Pritchard explained, “Without these glaciers, particularly in the Indus and Aral, droughts would be substantially worse in summer than they are now, and that could be enough to drive conflict and migration, which becomes a regional and potentially global issue. It could result in social instability, conflict, and migrations of populations.”

According to Pritchard’s research, the high mountains of Asia supply 23 cubic kilometers of water downstream every summer. If the glaciers were to vanish, the amount of water during the summer would decrease by 38 percent in the upper Indus basin on average and up to 58 percent in drought conditions. The loss of summer meltwater would have its greatest effects on the municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan, with water stress being classified as medium to extremely high. For example, the Indus River, which has one of the world’s largest irrigation networks, is Pakistan’s primary source of freshwater. About 90 percent of Pakistan’s agriculture depends on the river and much of the world’s cotton comes from the Indus River Valley. Additionally, decreased meltwater would further affect upstream countries such as Kyrgyzstan, Tajikistan and Nepal that rely on hydropower. The Toktogul hydropower plant and four smaller plants downstream produce almost 80 percent of Kyrgyzstan’s electricity.

An irrigation system in the Indus basin in Pakistan (Source: GRID Arendal/Creative Commons).

Pritchard presents data that show how much the glacier meltwater contributes to different regions within Asia during drought. Some areas, such as the Aral Sea, rely exclusively on the glacier water during the drought months. The glaciers provide meltwater when rainfall is minimal or nonexistent under drought conditions because glaciers store precipitation for decades to centuries as ice, which then flows to lower altitudes when melting in the summer. Twila Moon, a postdoctoral research associate at the U.S. National Snow and Ice Data Centre in Boulder, Colorado, recently discussed the consequences of global glacier volume loss on populations worldwide in Science magazine. “Rising seas, to which melting ice is a key contributor, are expected to displace millions of people within the lifetime of many of today’s children,” she stated. “This loss of Earth’s land ice is of international concern.”

As temperatures continue to rise, the surrounding regions will begin to lose their source of water for food, agriculture and survival. Due to inadequate scientific studies and evidence, the trends and status of glaciers in the Himalayas and other ranges are not being sufficiently observed and recorded. A lack of adequate monitoring of the glaciers means political action to adapt to the foreseen changes will be limited. More communication between the scientific community and policymakers is needed to relay knowledge about the impacts of changes in glaciers on the region’s hydrology, environment and livelihoods.

Please follow, share and like us:
error

Ion Concentrations Are Growing in Himalayan Lakes

The Group Photo of the Whole Team Taken in Himalaya ( Source: Dr. Salerno)
A group photo of the research team taken in the Himalayas (Source: Franco Salerno).

Dr. Franco Salerno and a team of Italian researchers conducted long-term field work in the Himalayan area, discovering a dramatic increase of ionic concentrations in glacial lakes. This increase may lead to some large and irreversible environmental effects, according to Salerno et al. A report detailing their findings was published in the journal of Environmental Science & Technology in July.

Over the past two decades, Dr. Salerno and his team have observed a significant rise in ionic content in a total of 20 remote high-altitude glacial lakes located in central southern Himalaya. When asked by GlacierHub about why his team conducted their research in the Himalayan region, Dr. Salerno said, “The Italians have a long experience and passion for the high mountains. The culture and the capacity to climb is probably born around the Alps, and also drove us to study the Himalayan glaciers.”

The group had to overcome many difficulties to perform their research including low temperatures, language barriers, and even snowblindness. But thanks to help from the local people, they managed to finish their research. The scientists also received support from the Ev-K2-CNR Association and the Italian National Research Council (CNR) to conduct studies in the Hindu Kush – Karakorum – Himalaya region and the countries of Nepal, Pakistan, China (Tibetan Autonomous Region) and India.

Dr. Salerno and his team are doing field research (Source: Dr. Salerno).
Dr. Franco Salerno and his team conducting field research (Source: Franco Salerno).

Among their findings, the team detected a substantial rise of in-lake chemistry determined mainly by the sulfate concentration. LCN9, one of the 20 lakes monitored on an annual basis for the last 20 years, was found to have sulfate concentrations that increased by over 4-fold over that time period. In this region, the researchers also observed a significant relationship between the increase in the annual temperature recorded in the area and the enhanced conductivity in two glacial lakes.

After examining several factors, including temperature, precipitation, rocks and soil weathering processes, and seasonal snow cover duration, they concluded that glacier retreat likely was the main factor responsible for the observed increase of sulfate concentrations. Moreover, the weakened monsoon of the past two decades has partially contributed to the lakes’ enrichment through runoff waters that are concentrated in solutes and by lowering the water table, resulting in more rock exposed to air and enhanced mineral oxidation.

Scientists record daily data (Source: Dr. Salerno).
Scientists record daily data (Source: Franco Salerno).

The higher mineral contents have not threatened the ecosystems, but high mountain ecosystems can be especially vulnerable to climate change. The change may lead to some negative outcomes not yet foreseen. Research in other areas including the Florida Everglades, California Limekiln Creek and Vestfold Hills have shown the negative impacts of increased sulfate concentrations on lake ecosystems. By the same token, a notable increase of ionic concentrations may lead to irreversible changes to the fragile local ecosystem, biodiversity in the lakes or even human health.

As Dr. Salerno commented, “We think that the glacier masses in this region are decreasing as coupled effect of the global warming and the weakness of the monsoon. Even if these changes do not pose a direct and immediate threat to the ecosystem, they occurred in a limited time span and significantly modified the average chemical composition of lake water, which will cause some potential changes in the future.”

 

Please follow, share and like us:
error

Threat from Himalayan Glaciers Larger Than Expected

By Jingchao Wang and Xuefei Miao

Impacts of climate change in river systems are likely to have considerable social, economic, ecological and political implications, according to a new study published in the journal of Regional Environmental Change.

In order to understand governance mechanisms for climate adaptation in the region, a systematic review methodology was applied to 33 different papers that describe adaptation projects to examine adaptation responses in the riparian countries of three Himalayan river basins at three different levels—policy objectives, institutions and practice. The authors found that most studies focus on the Ganges River Basin. Since 2011 to 2012, the number of studies about climate change adaptation in the region have significantly increased.

debris_560px
The icefall of Khumbu glacier, in the Nepali Himalayas (Source: Nature)

Himalayan glaciers are the source of numerous large Asian river systems, which support rich ecosystems and irrigate millions of hectares of fields, thereby supporting more than one billion people who live in their catchments. The three major Himalayan river basins—Brahmaputra,Ganges and Indus—are spread over six countries in South Asia (Afghanistan, Bangladesh, Bhutan, India, Nepal and Pakistan).

The region is home to around 1.3 billion people, predominately those of low economic status, living in the three basins that cover more than 2.20 million square kilometers. India’s National Ganga River Basin Authority (NGRBA) estimates that more than half of India’s poor communities live on the main stem of the Ganges and that by 2050, this population is expected to rise to approximately 720 million from an estimated 500 million in 2001.

Given the large geographical spread of the three river basins along with the huge number of poor people living in the region, adaptation to the anticipated adverse impacts of climate change is soon expected to feature dominantly in the mainstream policy discourse of the concerned countries, the authors wrote. Though each country in the region faces major threats, very few cross-country adaptation projects have been achieved, the new study shows.

A review of adaptation projects found that existing projects tend to focus on livelihood security, rather than water availability, which is a major concern for communities in the region. Already communities are vulnerable to droughts and floods and glacier melt excpected to exacerbate coastal and inland flooding, especially in Bangladesh.

1
Researchers went to Himalayas to collect ice cores(Source: NASA)

With climate change amplifying current levels of variability, more lives are at risk and global projects to alleviate local poverty face greater uncertainty and even failure. Large-scale population migration could add to global social instability as millions of people are forced to leave their homes. Considering the different levels of development among countries, difficulties exist in order to conduct large-scale projects, the authors said.

But a number of challenges make international projects difficult to implement. Most countries make their domestic interests a top priority, but climate change knows no national boundaries.

In addition, local cultures vary and some communities consider their cultural heritage as more valuable than economical benefits they could gain from adapting to climate change. A large number of religious sites and structures in the Indian Himalayas, where Buddhism was born, are threatened by climate change. Moreover, due to Himalayan plateau region’s unique environment, distinct biodiversity has formed. Climate change can destroy this heritage and may cause a lot of serious ecological problems, but the review showed that 30 percent of studies on climate adaptation indicate a gap in local awareness about the threats posed by climate change, which will impact peoples’ ability to respond to the challenges presented by climate change.

In order to operationalize adaptive practice effectively, scientists should widen the knowledge base, promote national and regional initiatives to conduct research, develop knowledge and data sharing and establish a cooperative framework to advance an agenda for the exchange of experience and better practices, the authors concluded. As many of the rivers in the region share trans-boundary systems, cross-country cooperation and dialogue among and within jurisdictions should be a priority. However, without clear climate policy objectives and without successful cross-country collaborations, it will not be easy to develop effective adaptation to climate change.

From a policy perspective, it is not merely necessary but urgent to build functional institutional mechanisms at both national and regional levels for addressing and responding to climate change through adaptation measures.

“Apart from India and Bangladesh, there is still ambiguity in goal setting which may constrain policy implementation,” the authors wrote. “At the institutional level, the observation that most of countries are in the process or have already designed structures for knowledge generation and management reflects the capacity for operationalizing the policy mandate of strengthening the scientific base for informed decisions.”

Please follow, share and like us:
error

Scientists Learn to Drone in the Himalayas

Researchers from Utrecht University in the Netherlands and scientists at the International Center for Integrated Mountain Development (ICIMOD) used drones to map difficult to reach regions of the Himalayas. (source: screenshot of ICIMOD video)
Researchers from Utrecht University in the Netherlands and scientists at the International Center for Integrated Mountain Development (ICIMOD) used drones to map difficult to reach regions of the Himalayas. (source: screenshot of ICIMOD video)

As glaciers around the world melt in response to climate change, scientists are rushing to map and catalog the precise ways in which they are changing. They have new allies in this fight: drones. But first, scientists have to learn how to use and operate them.

In late January, an organization dedicated to sustainable mountain development called ICIMOD (International Centre for Integrated Mountain Development) held a workshop in Kathmandu, Nepal on the use of drones for scientific research. The workshop addressed permitting issues, the use of drones in landscape mapping, and some future applications of drones. These include detecting and documenting flooding and landslide hazards, as well as tracking illegal logging and mining. Participants were also shown how to fly a drone and tested the machines out in the field.

Langtang Lirung Glacier © Funky Buddha/flickr
Langtang Lirung Glacier © Funky Buddha/flickr

Many researchers believe that drones could significantly transform our understanding of glacier dynamics and glacier melt. They can collect data on large geographical areas faster than ground-based field studies and have higher spatial resolution than satellite imagery. And they are especially suited to tracking and mapping natural hazards and risks, such as glacial lake outburst floods and landslides, due to the ease with which they can reach and monitor far-flung places in dangerous terrain. All it takes to launch one into the world to fetch glacier data is a GPS device, a camera and a little programming to design a schedule and plot out a route.

ICIMOD and researchers from Utrecht University in the Netherlands were the first to launch a study of Himalayan glaciers using UAVs (unmanned aerial vehicle). The Himalayas, which supply rivers that provide water to a fifth of the global population, are losing ice at the rate of 9,000 sports stadiums full of ice every year. But what exactly is the role that the glaciers play in the water cycle of the Himalayan region? And how are they melting? There are many theories but very little data. The groups’ initial research findings, which concerned the debris-covered Lirung Glacier in the Langtang valley, were published in the journal Remote Sensing Environment last July.

Today, the ICIMOD and Utrecht University researchers are using UAV’s to conduct comparative studies of the Lirung and Langtang glaciers in Nepal. That project is attempting to address several key research questions: (a) how quickly and where specifically are debris-covered glacier

Launching a drone into flight. © University of Utrecht
Launching a drone into flight. © University of Utrecht

tongues melting; (b) how dynamic are ice cliffs and supra-glacial lakes and what is their role in controlling the melt; (c) how fast are the glaciers moving, or what is the ice flow velocity and; (d) are the glaciers retreating? The project leaders also hope to train local researchers so that they can use UAVs to monitor glaciers in the region over the long term.

Other UAV-glacier projects include the Ocean Research Project’s glacier mapping research on the southeast coast of Greenland. PhD students in the geosciences from the University of Cambridge and Aberystwyth University are also using drones to investigate the glaciers of West Greenland. Still others are using them in the Canadian Arctic. Even high school students are getting in on the act. One group from Miami spent the summer investigation ice mass loss at the Kennicott Glacier in Alaska.

As drones evolve, with better technology and software, and scientists get a better handle on how to use and operate them, the research findings they can contribute to the field of glaciology will surely evolve as well.

For other stories on the use of drones in glacier research, look here and here

Please follow, share and like us:
error