Roundup: East Antarctic Ice Sheet, Mining Impacts and Flood Preparation

East Antarctic Ice Sheet Has Fast-Moving Margins

From Geomorphology: “The identification of different ice flow configurations, evidence of subglacial water and past ice margin collapse indicates a dynamic ice sheet margin with varying glacial conditions and retreat modes. We observe that some of the described morphological associations are similar to those found in the Amundsen sea sector of the West Antarctic Ice Sheet (WAIS) where they are associated with ice sheet and ice stream collapse. Although further studies are needed to assess the precise timing and rates of the glacial processes involved, we conclude that there is enough evidence to support the hypothesis that the EAIS margin can behave as dynamically as the WAIS margin, especially during glacial retreat and ice sheet margin collapse.”

Read more about the past behaviors of the East Antarctic ice sheet’s glaciers here.

The East Antarctic coastline where the Totten Glacier meets the ocean (Source: NASA).

 

Environmental Impacts of Mining in Glacier Regions

From the Leibniz Institute for East and Southeast European Studies: “The ugly side of Kumtor is that an open-cast mine in pristine mountain conditions is bound to have negative environmental consequences. Combined with global climate change, the threat to glaciers and to sustainable water supplies downstream is severe. Kumtor’s owners and managers are aware of the issue; the questions are to what extent is the company responsible for countering environmental damage and what is the role of the government in protecting the environment?”

Read more about the Kyrgyz Republic’s gold mine here.

An open pit in Kumtor Gold Mine in August 2012 (Source: The EITI/Flickr).

 

Preparing for Glacier Lake Outburst Floods in India

From Environmental Science and Policy: “Over recent years, at the level of international climate science and policy, there has been a shift in the conceptualization of vulnerability toward emergence of ‘climate risk’ as a central concept. Despite this shift, few studies have operationalized these latest concepts to deliver assessment results at local, national, or regional scales, and clarity is lacking. Drawing from a pilot study conducted in the Indian Himalayas we demonstrate how core components of hazard, vulnerability, and exposure have been integrated to assess flood risk at two different scales, and critically discuss how these results have fed into adaptation planning.”

Read more about translating climate risk in planning for floods in the Indian Himalayas here.

Schematic overview showing how the integrative concept of climate risk as presented by the IPCC (2014) was operationalized for the assessment of flood risk in Himachal Pradesh, Northern India. (Source: Environmental Science and Policy).
Please follow, share and like us:
error

GlacierHub News Report 05:10:18

GlacierHub News Report 05:10:18

The GlacierHub News Report is a bi-monthly video news report that features some of our website’s top stories. This week, GlacierHub news is featuring an interview with Sophie Elixhauser, a new study on the Atlantic Meridional Overturning Circulation, a discussion of hazardous development in Nepal, and a theory about snowballs and slushies!

 

This week’s news report features:

 

East Greenland’s Iivit Communities: An Interview with Sophie Elixhauser

By: Natalie Belew

Summary: GlacierHub interviewed anthropologist Sophie Elixhauser to discuss her recently published book, “Negotiating Personal Autonomy: Communication and Personhood in East Greenland.” She shared her perspective of her time observing the Inuits in East Greenland. She explained that she began her research in East Greenland with a very broad question about how people relate to their environment.

Read her full interview here.

 

A New Low for the Atlantic Meridional Overturning Circulation

By: Sabrina Ho

Summary: A new paper published in Nature has shown that the Atlantic Meridional Overturning Circulation has decreased drastically in strength, especially in the last 150 years. Increasing freshwater input from melting glaciers and ice sheets in the Nordic and Arctic Seas have contributed to the slowdown. GlacierHub interviewed Wallace Broecker, a well-known geoscience professor in Columbia University’s Department of Earth and Environmental Sciences who coined the term “the great ocean conveyor belt.” He claims that there are dozens of “water hosing experiments” that simulated freshwater input of higher magnitudes coming from Greenland. “Still they failed to shut down the AMOC,” he said.

Read more here.

 

Communities in Nepal Expand to Risk Areas, Despite Hazards

By: Jade Payne

Summary: A recently published study in the journal Land has found that more than a quarter of the new houses in Pokhara, the second-largest city in Nepal, are being built in highly dangerous areas susceptible to multiple natural hazards, including glacier lake outburst floods (GLOFs) and avalanches. The study lists a number of challenges for this rapidly-growing city, located in a region with a number of geological hazards. Most of the newly settled areas are located in agricultural areas, which are attractive to prospective residents because they are flat and have owners who permit construction. However, these locations place new houses at great risk. The researchers indicate that this growth will continue until at least 2035.

Read more here.

 

Was the Earth Frozen Solid

By: Tae Hamm

Summary: Many scientists are coming up with hypotheses about a global ice age during the Cryogenian geologic period that took place between 720 to 635 million years ago. Two main hypotheses are on the table: “Snowball Earth” theory, which argues that ice covered the entire Earth, and “Slushball Earth” hypothesis, where the sea near the equator stayed open, allowing the evaporation and precipitation of water to persist. However, neither of these hypotheses are set in stone, but are rather part of an ongoing debate that requires much clarification. Developing different climate models with many parameters is necessary to better understand what happened during the Cryogenian period, giving flexibility to the ever-unknown complexity of past climate conditions. Moreover, careful study of the organisms that survived during this period could further help us understand the truth behind the Cryogenian ice age.

Read more here.

 

Video Credits:

Presenters: Brian Poe Llamanzares & Sabrina Ho

Video Editor: Brian Poe Llamanzares

Writer: Brian Poe Llamanzares

News Intro: Truyền hình SVOL

Music: iMovie

Please follow, share and like us:
error

Communities in Nepal Expand to Risk Areas, Despite Hazards

Nepal is in the top 10 percent of countries in the world in terms of the frequency and severity of disasters. A recently published study in the journal Land has found that more than a quarter of the new houses in Pokhara, the second-largest city in Nepal, are being built in highly dangerous areas susceptible to multiple natural hazards, including glacier lake outburst floods (GLOFs) and avalanches.

Location map of the study area (Source: Land).

The study lists a number of challenges for this rapidly-growing city, located in a region with a number of geological hazards. Most of the newly settled areas are located in agricultural areas. These are attractive to prospective residents, because they are flat and have owners who permit construction. However, these locations place new houses at great risk. The researchers indicate that this growth will continue until at least 2035.

Time-series Landsat images helped the researchers to explore the changes in land use and urbanization of the Pokhara from 1988 to 2016. The images were verified using extensive field visits to ensure accuracy. They served as a basis for projections into 2025 and 2035.

GLOFs are a major threat in Nepal, where 15 percent of the country is covered by the Himalayan mountains. This holds true for the Kaski District, where Pokhara is located. With rapid melting due to rising temperatures, glacier lakes are forming and increasing the level of risk seen in the surrounding areas.

The Annapurna and Machapuchare mountains in Pokhara, Nepal (Source: Marina & Enrique/Flickr).

Two of the most prominent issues in dealing with hazards such as this in Pokhara are uncertainty and perception. According to a report by the International Centre for Integrated Mountain Development (ICIMOD), “The probability of a lake outburst cannot be predicted with any reasonable level of certainty.” In addition, the views of the people at greatest risk are often more strongly influenced by, often inaccurate, media accounts than by scientific assessments.

Tony Oliver-Smith, a Professor Emeritus of Anthropology at the University of Florida, told GlacierHub about his work in hazard perception and resettling. “Some people may be generally aware of the risks, but the need for housing is so great that it may override such concerns,” he said. This kind of drive is typical for areas like this one that are undergoing rapid urbanization, often in unplanned environments. “Many people prefer to take their chances with hazards rather than government schemes to relocate them in more secure zones,” continued Oliver-Smith.

The city of Pokhara, Nepal (Source: Matt Zimmerman/Flickr).

Further, cities like Pokhara often lack relevant legislation and regulatory capacity, appropriate agencies, and personnel both in qualifications and number, to enforce land use restrictions regarding housing location and safety, according to Oliver-Smith. A practical application of the study’s findings, he said, would be to develop appropriate legislation and funding to improve land use regulatory capacity, increase awareness of risk in vulnerable and exposed communities, and develop appropriate legislation and capacities in resettlement practice.

Natural hazards are on the rise globally, and with more people moving to more susceptible areas, the losses in human life and property are likely to increase. “As you put more and more people in harm’s way, you make a disaster out of something that before was just a natural event,” Klaus Jacob, a senior research scientist at Columbia University’s Lamont-Doherty Earth Observatory, told Live Science. To make matters more difficult, the study emphasizes that “developing countries with low-income and lower-middle economies experience greater loss and damage due to hazards.”

The researchers hope that their results “will assist future researchers and planners in developing sustainable expansion policies that may ensure disaster-resilient sustainable urban development of the study area.”

The study ultimately illuminates the common risk of hazards that people all over the world face. Luxury apartments being built along coastlines in flood-prone cities threatened by sea level rise continue to be built, similar to the continued urbanization in Pokhara. It’s a common situation, and finding solutions requires place-based, locally-specific information and research.

 

Please follow, share and like us:
error

Roundup: GLOFs, Iron, and Soil Stability

Roundup: GLOFs, Iron, and Soil

 

Observations of a GLOF near Mt. Everest

From The Cryosphere: “Glacier outburst floods with origins from Lhotse Glacier, located in the Everest region of Nepal, occurred on 25 May 2015 and 12 June 2016. The most recent event was witnessed by investigators, which provided unique insights into the magnitude, source, and triggering mechanism of the flood. The field assessment and satellite imagery analysis following the event revealed that most of the flood water was stored englacially and that the flood was likely triggered by dam failure.”

Read more about the GLOF events in Nepal here.

Image of a GLOF from the Lhotse Glacier in June 2016 (Source: Caroline Clasoni/Twitter).

 

Transfer of Iron to the Antarctic

From Nature: “Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable than icebergs. Glacier-fed streams also export more acid-soluble iron associated with suspended sediment than icebergs. Significant fluxes of filterable and sediment-derived iron are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change.”
Learn more about iron transfer here.
Iron ore on an Antarctic glacier (Source: jpfitz/Twitter).

 

The Role of Vegetation in Alpine Soil Stability

From International Soil and Water Conservation Research: “One fifth of the world’s population is living in mountains or in their surrounding areas. This anthropogenic pressure continues to grow with the increasing number of settlements, especially in areas connected to touristic activities, such as the Italian Alps. The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation. In alpine regions, extreme meteorological events are increasingly frequent due to climate change, speeding up the process of soil degradation and increasing the number of severe erosion processes, shallow landslides and debris flows. Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas.”
Read more about soil stability here.
Vegetation on Mount Rainier (Source: National Park Service).
Please follow, share and like us:
error

Andean Farmer Demands Climate Justice in Germany

In the Cordillera Blanca Mountains of the Peruvian Andes, glacier retreat caused by climate change has led to an increased risk of flooding for residents living below. Saúl Luciano Lliuya, a farmer and mountain guide who faces the imminent threat of losing his house in a massive flood, argues that large polluters are to blame. This led him to file a lawsuit against the German energy giant RWE demanding the firm take responsibility for its CO2 emissions and help reduce the risk of flooding.

The lawsuit could set an important precedent – if Luciano Lliuya wins, anyone affected by climate change impacts could potentially sue for damages or compensation beyond the borders of their own country. This may provide a more fruitful strategy in light of stalling political efforts at the United Nations level to combat climate change and promote adaptation. In December 2016, the lawsuit was dismissed by the Essen Regional Court in Germany and is currently pending appeal.

Saúl Luciano Lliuya at the Essen Regional Court in Germany, November 2016 (Source: Germanwatch/Photo courtesy Noah Walker-Crawford).
Saúl Luciano Lliuya at the Essen Regional Court in Germany, November 2016 (Source: Germanwatch/Photo courtesy Noah Walker-Crawford).

Climate Change in the Cordillera Blanca

Growing up below the snow-capped mountains of the Cordillera Blanca, Lliuya has borne witness to a changing Andean climate over the past decades. Now aged 36, his work as a mountain guide brings him to high altitudes where he has observed the glaciers progressively receding year after year. This led the glacial lake Palcacocha to rise exponentially in volume – from 0.5 million m3 in 1974 to 3.9 million m3 in 2003 and 17.4 million m3 in 2016. A dislodged piece of glacial ice falling into the lake could lead to a massive outburst flood that would destroy large parts of the city of Huaraz below, according to a recent scientific study.

Huaraz is no stranger to disaster. In 1941, Lake Palcacocha produced an outburst flood that killed thousands and devastated the city. In subsequent decades, the Peruvian authorities drained Palcacocha and other glacial lakes, constructing dams to prevent future disasters. Residents of Huaraz rebuilt the city. Today, existing dams and drainage systems are no longer sufficient at Palcacocha as glacial retreat has increased dramatically and authorities struggle to fund security measures after neoliberal cuts to public finance since the 1990s.

In the short term, glacial retreat in the Cordillera Blanca causes the threat of too much water flooding populated valleys. But if glaciers disappear in the long term, the region will lose its primary source of water. Both scenarios can have devastating consequences. In addition, residents face an increasingly unpredictable climate that disrupts agricultural cycles.

Lliuya argues that Peruvians have contributed little to these problems. “The big companies are mainly responsible for climate change through their emissions. They need to take responsibility and help us face the problems they caused,” Lliuya told GlacierHub. He wanted to take matters into his own hands. When a colleague put him in touch with members of the German environmental NGO Germanwatch, he found partners who were willing to help him take action. Introducing him to the German environmental lawyer Roda Verheyen, the NGO offered to support a legal claim for climate justice against a major polluter. In November 2015, he traveled to Germany and filed a lawsuit against RWE, the largest single CO2 emitter in Europe.

image02
Lake Palcacocha, December 2014 (Source: Germanwatch/Photo courtesy Noah Walker-Crawford)

The lawsuit

“This is a precedent. RWE AG releases significant emissions, principally through its coal-fired power plants, which makes global temperatures rise, causes glaciers to melt and leads to an acute threat to my client’s property,” Verheyen argued. “We request that the court declare RWE liable to remove this impairment.”

The lawsuit relies on article 1004 of the German Civil Code to argue that RWE is partially responsible for the impairment that Luciano Lliuya faces to his property through climate risk. Drawing on the Carbon Majors study which quantified industrial greenhouse gas emissions and linked them to individual companies, the lawsuit states that RWE contributed 0.47% to historical emissions and should provide its share to reduce flood risk in Huaraz. The Peruvian authorities are planning a multi-million dollar project to drain Lake Palcacocha and build a new dam. Lliuya demands that RWE pay 0.47% of this amount, or around $20,000. The amount is miniscule for a large company but could set a massive precedent.

RWE rejects the claim, arguing that climate change should be discussed at a political level rather than in the courts. In its legal response, the company claims that climate change is so complex that individual companies cannot be linked to specific impacts. In addition, the company denies that Huaraz faces an imminent risk of flooding. RWE did not reply to GlacierHub’s request for comment.

In December 2016, the Essen Regional Court dismissed Lliuya’s lawsuit on formal grounds, stating that his claims lacked legal foundation and coherence. In their verdict, the judges argued that RWE may have partially caused the risk of flooding in Huaraz in scientific terms, but this does not translate into causality in legal terms.

Roda Verheyen and Saúl Luciano Lliuya (Source: Germanwatch/Photo courtesy Noah Walker-Crawford).
Roda Verheyen and Saúl Luciano Lliuya (Source: Germanwatch/Photo courtesy Noah Walker-Crawford).

“The pollutants, which are emitted by the defendant, are merely a fraction of innumerable other pollutants, which a multitude of major and minor emitters are emitting and have emitted. Every living person is, to some extent, an emitter,” reads the finding.

Following the judges’ argumentation, individual polluters cannot be held responsible for climate change because emissions are so widely dispersed. While RWE welcomed the verdict, Lliuya is defiant and vowed to continue. His lawyer is currently preparing an appeal.

The lawsuit is the first of its kind to come this far, but it could set the stage for future climate justice initiatives. In glaciated mountain ranges around the world, people face increased threats of flooding. Even if Lliuya’s lawsuit fails upon appeal, it forms part of a larger trajectory of legal initiatives that demand immediate action while political solutions remain stymied. In the United States, Our Children’s Trust supports lawsuits by children and teenagers against local and federal authorities demanding more sustainable policies. In the Netherlands, the Urgenda citizen’s initiative successfully sued the Dutch government demanding more ambitious climate targets in a suit that is currently pending appeal.

In the long term, Lliuya hopes lawsuits against large polluters will create political pressure to find sustainable solutions to the impacts of climate change. These solutions should account for the historical responsibility of companies such as RWE. Only few people have the means to take legal action; a sustainable strategy must benefit all. As long as policy makers fail to make polluters pay, Lliuya will continue his legal battle against RWE.

“The biggest contributors to climate change must finally take responsibility,” he said. “I want justice.”

 

Please follow, share and like us:
error

How Glacial Lakes in India Offer Lessons on Adaptation

Situated on a high plateau in northwest India, the Ladakh region is part of the contested Indian state of Jammu and Kashmir. While local communities share similar linguistic, cultural, and religious beliefs with Tibet, Pakistan and India continue to disagree on territorial claims in the region. Located in the Himalaya Mountains, the Ladakh region is home to some of the world’s largest glaciers outside of polar regions with 266 glacial lakes, according to Mountain Research and Development. Given the recent warming temperature trends, the glacial retreat in the region places Ladakh’s small mountain communities at risk for destructive events known as glacial lake outburst floods or GLOFs. A GLOF occurs when the terminal moraine dam located at the maximum edge of a glacier collapses, releasing large volumes of water.

In an attempt to minimize these threats to small mountain communities, the International Research Institute of Disaster Science, the Department of Environmental Science at Niigata University, and the Ladakh Ecological Development Group offered a one-day workshop to educate populations on their local risks due to the increased numbers of glacial lakes in the region. Three months after the workshop, facilitators returned to the area to survey local villagers to measure the retention and overall success of this adaptive approach. 

(Source: Rajesh/Creative Commons)
Kargil District, Ladakh (Source: Rajesh/Creative Commons)

In the article, scientists report that knowledge of risks was limited: “Most villagers knew of some but not all of the glacier lakes in the valley – primarily those closest to the regular routes used in their daily lives, such as near pasturelands in the headwater areas and along trade routes to the adjacent valleys.” The majority of villagers obtained their knowledge from communications with people who had come across the glacial lakes accidentally, according to the researchers.

By presenting and encouraging action that complemented daily lives, the scientists believed they were able to better prepare communities for climate risks increases. The scientists were able to provide local villagers with information on how to more accurately assess glacier lakes and the potential risk for a GLOF by developing an understanding of local routes. These tools were promoted to help villagers contribute to a stronger, more resilient local mountain community.

A warming planet has caused glacial melt to increase in regions like northwest India, leading to the formation of more glacial lakes since the 1970s, according to NASA. With the increased number of glacial lakes located in the Ladakh region, the risk for glacial outburst flood rises, as stated by Worni et al. Given the high altitude origins of these glacial lakes, a sudden release of water can have similar catastrophic impacts as a massive avalanche. The sudden force is capable of leveling anything in its path, including villages.

“[GLOFs] result in serious death tolls and destruction of valuable natural resources, such as forests, farms, and costly mountain infrastructures,” according to the India Environmental Portal. “The Hindu Kush-Himalayan region has suffered several GLOF events originating from numerous glacial lakes, some of which have trans-boundary impacts.” Educating and preparing small mountain communities becomes increasingly critical because forecasting abilities for these events are limited.

(Source: Creative Commons)
Himalayan Mountains from air (Source: Karunakar Rayker/Creative Commons)

The forecasting challenges surrounding GLOFs makes communicating risk to local communities difficult. In an attempt to reach and effectively communicate risks to remote mountain villages in the Ladakh region, the International Research Institute of Disaster Science, the Department of Environmental Science, Niigata University, and the Ladakh Ecological Development Group developed a concept for the one day workshop. According to the report, of the 120 people participating, three villages were represented, all possessing different leveled risks. Villagers were picked at random and varied in age from school children to elderly members in the community. Once the workshop began, facilitators encouraged the conversation and integration of both villager observations and scientific fact provided by scientists working for the Ladakh Ecological Development Group.

The workshop began with villagers sharing their knowledge and perceptions on changes in the region. By providing material in both English and the local language, Ladakhi, the workshop tried to make the scientific material more accessible to villagers, regardless of their preferred language. Additionally, many of the challenging scientific processes were presented visually and had accompanying text in both languages. Finally, this information was merged and displayed in terms of future countermeasures needed to reduce flood risks. Success was measured after the workshop had completed.

8488517032_c3724a4de9_o
Drang Drung Glacier (Source: Poonam Agarwal/Creative Commons)

Three months after the workshop, a survey suggested that the local communities had benefited from the experience: “Of the 60 respondents, 34 stated that they had acquired new information from the workshop and booklet. Among them, 18 had not participated in the workshop,” according to the report. While these numbers show an opportunity to improve understanding and retention, the feedback also demonstrates that the workshop was successful in providing villagers who attended with accurate, accessible information. It generated important discussion about confronting risks associated with a changing glacial landscape, as demonstrated by half of the people surveyed not having attended the conference.

Integrating climate science and culture is the future to building resilient communities. As was discovered in the Ladakh region, religion helped shape the local communities view of natural environmental processes. “Some Domhar villagers came to think of these lakes as sacred places; this belief is still alive among some villagers, especially the older people,” according to the researchers. “Participants of one of the four discussion groups mentioned a belief that sacred horses and sheep lived at lakes in the headwater areas of the Gongpa-Rangchong Valley, and that floods or other disasters would occur if these animals were offended…. Furthermore, the participants of the same discussion group also noted that they could see Tibetan temples and landscapes reflected on the surface of the lake.”

4830895184_3a0317e2b2_o
Pangong Tso Lake (Source: Praveen/Creative Commons)

Respecting and acknowledging local belief systems is imperative and proved to be useful in the case of educating local mountain communities in the Ladakh region. Reflections appearing in the lakes is deeply-rooted in the religious cultures of the Ladakh region, which is primarily Tibetan Buddhists, Hindus, and Muslims, according to the Yale Journal. By creating a workshop that encouraged conversation about the climate changes in the region, the scientists were able to direct the retention of information by providing a learning environment that validated all views. Additionally, by listening and honoring local culture, scientists were able to present scientifically accurate information in a way that would incorporate everyday culture.

Educating communities is the foundation of creating and implementing a successful adaptation plan, as seen with the work done in northwest India. Educating and adapting ensures resilience to risks associated not only with glacial outburst flood risks, but also other risks associated with changing climates. The methods highlighted by this report of educating through culturally-aware discussions showed promising results worth building upon. As global communities continue to face challenges associated with changing climates, it’s worth exploring methods that have successfully started to implement change.

Please follow, share and like us:
error

Peruvian Demands Payment for Climate Change

Lake Palcacocha, 2002. As the lake absorbs glacier melt, it threatens to flood Huaraz. "Lago Palcacocha 2002". Licensed under CC BY-SA 3.0 via Wikimedia Commons.
Lake Palcacocha, 2002. As the lake grows from glacier melt, it threatens to flood Huaraz. “Lago Palcacocha 2002“. Licensed under CC BY-SA 3.0 via Wikimedia Commons.

Peruvian farmer and mountaineering guide Saul Luciano Lliuya, and the town of Huaraz where he lives, long known as the “Switzerland of Peru,” may go down in climate-change history.

The hundreds of tropical glaciers that blanket the mountains above Huaraz are melting, and Lliuya lays partial blame on German energy company RWE, Europe’s largest emitter of greenhouse gases. Last Friday, Lliuya sent a letter of complaint to RWE, demanding that it pay $21,000 in compensation for its role in climate change, pocket change for a company that earned $1.38 billion in 2014. According to Lliuya’s claim, all the carbon RWE emits into the atmosphere contributes to glacial melt that threatens to flood his town, destroy his home and displace his family.

Saul Lliuya, a small farmer and tour guide from Huaraz, Peru, who is seeking compensation from a German company for increased flood risk due to greenhouse has emissions.
Saul Lliuya, author of the letter of complaint. source: Germanwatch

It is the first such claim in Europe and is backed by a German environmental NGO called Germanwatch, a representative of which met with Lliuya during the Lima Climate Change Conference, COP20, last December. Lliuya sent the letter to RWE through his lawyer Roda Verheyen, a Hamburg-based environmental attorney. If RWE is not willing to pay or does not answer his request by April 15, Lliuya will evaluate the possibility of suing the company.

“This move is unparalleled in Europe,” said Christoph Bals, Germanwatch’s policy director, in a statement. “It is unprecedented both in legal and political terms.  It empowers potential climate change victims. It implements the ‘polluters pay’ principle, a step which is long overdue. A company which creates risks to others has two obligations: stopping to hurt them and limiting the damage.”

Michael Murphy, a spokesman for RWE, told GlacierHub via email that the company could not comment on the letter because it had not yet received it. There is no chance a lawsuit would turn into a class action, because Germany does not have a legal framework for such cases, Verheyen said, also via email. “I do not know whether this will spur similar cases,” she wrote. “My client takes a very courageous step.”

Cordillera Blanca, © Diego Giannoni
Cordillera Blanca, © Diego Giannoni

Given the timing, the case could have an impact on negotiations at the climate treaty meeting in Paris this December. According to the most recent assessment report from the Intergovernmental Panel on Climate Change, retreat and melting in the tropical glaciers of the Andes are caused by climate change. In fact, there are few environmental risks in which climate change can as clearly be faulted as Andean glacier melt, says Germanwatch.

“We do think that both the present claim and a potential lawsuit could lend new momentum to a climate agreement and in the international climate debate,” wrote Stefan Küper, Germanwatch press officer, in an email.

Huaraz is the capital of the region of Ancash, which is a site of great social unrest in Peru, in part due to the environmental impacts of mining mega-projects, which have long been charged with contaminating local water resources. Ancash registered the highest number of social conflicts of any region in Peru during February, with 24 cases, according to the Peruvian government’s Public Defender’s Office (Defensoría del Pueblo).

Flood Risk

The mountain range that towers over Huaraz is known as the Cordillera Blanca, or white mountain range, the highest tropical mountain chain in the world. These dramatic white peaks are covered in 722 glaciers and 296 lakes, according to some estimates. But as the glaciers melt, they threaten not only to deplete a critical water source for the region, but to overwhelm the lakes below, causing torrential and devastating flooding in what are known as a glacial lake outburst floods. One of these lakes, called Lake Palcacocha, sits directly above Huaraz and is thought to pose major flood risk to the town. Over the past 40 years, the lake has grown in size by eight times and in volume by 30 times, according to Lliuya’s claim against RWE.

Plazuela Belen, city of Huaraz, Peru, at night. ©Dtarazona Licensed under CC BY-SA 3.0 via Wikimedia Commons.
Plazuela Belen, city of Huaraz, Peru, at night. ©Dtarazona
Licensed under CC BY-SA 3.0 via Wikimedia Commons.

“Two glaciers could collapse into the lake, that would cause a big flood wave which would destroy the house of my family and many other houses in Huaraz. This is an unacceptable risk,” Lliuya told the Guardian. About 40,000 people live in the high-risk zone for flooding from Lake Palcacocha, according to the Center for Research in Water Resources at the University of Texas, Austin. In 1941, the lake banks were breached by flooding, and within a matter of minutes Huaraz was inundated.

Lliuya says RWE owes Huaraz $21,000 because that sum is equivalent to 0.47% of the estimated cost of protecting the town against flooding and other risks associated with glacier melt. According to the Institute of Climate Responsibility in Colorado, RWE is responsible for 0.47% of all global warming emissions produced between 1751 and 2010. The cost of protecting Huaraz would include drainage of Lake Palcacocha until safety works can be completed, including the building of new dams and the repairing of old ones.

A mutual friend of Lliuya and Germanwatch first introduced them, prior to the meeting at COP20. A small Germanwatch team including Christoph Bals subsequently visited Lliuya and his family in Huaraz, and made a joint visit to Lake Palcacocha. Lliuya could not be reached for comment.

To read more about glacial lake flooding, check out these glacierhub.org stories.

Satellite Images Offer Clues to Glacial Lake Flooding

Glacier Hazards Linked to Prolonged PTSD in Kids

Bhutan’s Fortresses Yet Another Victim of Glacial Floods

For more about Peru’s glaciers, read these glacierhub.org stories

As Peru’s Glaciers Vanish, Villagers Appeal to the Gods

Photo Friday: COP20 Voices for Climate

Artists Stage Glacier Worship to Fight Climate Change

 

Please follow, share and like us:
error