Asia’s High Glaciers Protect Communities from Drought

A recent study in Nature by Hamish Pritchard, a glaciologist at Cambridge University and researcher for the British Antarctic Survey, shows that the high mountains of Asia, including the Himalayas, the Hindu Kush, and Karakoram, are being greatly affected by global warming. In some areas of the Himalayan region, for example, temperatures have risen faster than the global average. From 1982 to 2006, the average annual mean temperature in the region increased by 1.5 °C, with an average increase of .06 °C per year, according to UNEP. Even though studies on the high mountains of Asia are incomplete, it is believed that the mountains will lose half of their ice in the next 30 years.

Farmers in Pakistan are shifting from wheat to cope with the droughts (Source: Muhammad Darjat/Google Images).

This glacial loss has consequences for Asia as the glaciers provide an important ecosystem service to 800 million people by acting as a regional buffer against drought and providing summer meltwater to rivers and aquifers. If the glaciers in the eastern and central Himalayas disappear by 2035, the ecosystem service protecting against drought would be lost. Despite the fact that glaciers can promote drought resiliency, the surrounding areas would be particularly vulnerable to water scarcity because the glaciers will not supply enough meltwater to maintain the rivers and streams at adequate levels.

Lack of water could lead to devastating food shortages and malnutrition, further impacting the economy and public health. Based on a projected estimate of glacier area in 2050, it is thought that declining water availability will eventually threaten some 70 million people with food insecurity. Droughts in the Himalayan region have already resulted in more than 6 million deaths over the past century. Glacier loss would only add to drought-related water stress in the region, impacting a surrounding 136 million people.

In an interview with GlacierHub, Pritchard explained, “Without these glaciers, particularly in the Indus and Aral, droughts would be substantially worse in summer than they are now, and that could be enough to drive conflict and migration, which becomes a regional and potentially global issue. It could result in social instability, conflict, and migrations of populations.”

According to Pritchard’s research, the high mountains of Asia supply 23 cubic kilometers of water downstream every summer. If the glaciers were to vanish, the amount of water during the summer would decrease by 38 percent in the upper Indus basin on average and up to 58 percent in drought conditions. The loss of summer meltwater would have its greatest effects on the municipal and industrial needs of Pakistan, Tajikistan, Turkmenistan, Uzbekistan and Kyrgyzstan, with water stress being classified as medium to extremely high. For example, the Indus River, which has one of the world’s largest irrigation networks, is Pakistan’s primary source of freshwater. About 90 percent of Pakistan’s agriculture depends on the river and much of the world’s cotton comes from the Indus River Valley. Additionally, decreased meltwater would further affect upstream countries such as Kyrgyzstan, Tajikistan and Nepal that rely on hydropower. The Toktogul hydropower plant and four smaller plants downstream produce almost 80 percent of Kyrgyzstan’s electricity.

An irrigation system in the Indus basin in Pakistan (Source: GRID Arendal/Creative Commons).

Pritchard presents data that show how much the glacier meltwater contributes to different regions within Asia during drought. Some areas, such as the Aral Sea, rely exclusively on the glacier water during the drought months. The glaciers provide meltwater when rainfall is minimal or nonexistent under drought conditions because glaciers store precipitation for decades to centuries as ice, which then flows to lower altitudes when melting in the summer. Twila Moon, a postdoctoral research associate at the U.S. National Snow and Ice Data Centre in Boulder, Colorado, recently discussed the consequences of global glacier volume loss on populations worldwide in Science magazine. “Rising seas, to which melting ice is a key contributor, are expected to displace millions of people within the lifetime of many of today’s children,” she stated. “This loss of Earth’s land ice is of international concern.”

As temperatures continue to rise, the surrounding regions will begin to lose their source of water for food, agriculture and survival. Due to inadequate scientific studies and evidence, the trends and status of glaciers in the Himalayas and other ranges are not being sufficiently observed and recorded. A lack of adequate monitoring of the glaciers means political action to adapt to the foreseen changes will be limited. More communication between the scientific community and policymakers is needed to relay knowledge about the impacts of changes in glaciers on the region’s hydrology, environment and livelihoods.

Ice-Spy: Declassified Satellite Images Measure Glacial Loss

U.S. spy pilot, Gary Powers (RIAN/Creative Commons).
U.S. spy pilot, Gary Powers (RIAN/Creative Commons).

Since the 1960s, images from spy satellites have been replacing the use of planes for reconnaissance intelligence missions. Making the transition from planes to satellites was prompted by an infamous U-2 incident during the Cold War when U.S. pilot Francis Gary Powers’ U-2 spy plane was shot down in Soviet air space. Five days later, after considerable embarrassment and controversy, President Eisenhower approved the first launch of an intelligence satellite, part of a new scientific electronic intelligence system termed ELINT. Today, declassified images from satellites have resurfaced to support scientific research on glaciers and climate change.

Scientists from Columbia University and the University of Utah created 3-D images of glaciers across the Himalayas, and Bhutan specifically, by using satellite imagery to track glacial retreat related to climate change. Joshua Maurer et al. published the results of their Bhutan study in The Cryosphere to help fill in the gaps of “a severe lack of field data” for Eastern Himalayan glaciers.

Looking down the valley from a glacier the team visited in Bhutan in 2012 (Source: Joshua Maurer).
Looking down the valley from a glacier the team visited in Bhutan in 2012 (Source: Joshua Maurer).

Being able to understand and quantify ice loss trends in isolated mountain areas like Bhutan requires physical measurements that are currently not available due to complex politics and rugged terrain. Luckily, the scientists found an alternative route to reach their measurement goals by comparing declassified spy satellite images from 1974 with images taken in 2006 using the ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer, a spaceborne imaging instrument aboard NASA’s earth-observing Terra satellite.

Bhutan has hundreds of glaciers and glacial lakes. Physical data collection can be a daunting process in such a region considering the vast quantity of glaciers in combination with freezing weather conditions and high winds. The lead researcher of the Bhutan study, Joshua Maurer from Columbia University, experienced firsthand the logistical challenges associated with directly measuring changes in glacial ice density when conducting research on glacial change in the remote and high-altitude regions of Bhutan. Inspired by this difficult experience, Maurer collaborated with other scientists from the University of Utah to find alternative methods for quantifying trends in glacial ice density.

Camera system for a Discoverer-Corona spy satellite (Tim Evanson/Creative Commons).
Camera system for a Discoverer-Corona spy satellite (Tim Evanson/Creative Commons).

Maurer and the team of researchers devised a strategy to use declassified satellite images to collect data by a process of photogrammetry, the use of photographs to survey and measure distances. More than 800,000 images from the CORONA Satellite program, taken in the 1970s and 1980s, have been sent to the U.S. Geological Survey from the Central Intelligence Agency (CIA), and made available to the public.

Several advanced mathematical tools are necessary for making measurements from raw image files. For this particular study, the team used the declassified photos from the 1970s to track changes in glacial ice coverage over time when compared to more recent images from the Hexagon Imagery Program database taken by the Swiss-based Leica Geosystems’ airborne sensors in 2006. Once a timeline was created from the pictures, measurements were made using NASA’s space tool ASTER. This method, Maurer argues, is the solution for measuring massive amounts of hard-to-access data.

Landsat 8 satellite image, with studied glaciers outlined in white (Source: Joshua Maurer).
Landsat 8 satellite image, with studied glaciers outlined in white (Source: Joshua Maurer).

But making precise measurements integrating several sets of images from different periods of time is no simple task. Pixel blocks, minute areas of illuminations from which images are composed, were processed to correspond with regions designated on the film. The blocks of pixels were then selected to maximize coverage of glaciers and avoid regions with cloud cover. Computer-generated algorithms transform these blocks of image into measurements using automated point detectors and descriptors.

Images from the declassified satellite database may suffer from a lack of clarity, so it was also important for the researchers to address these issues. For example, debris-covered glaciers are difficult to distinguish from surrounding terrain using visible imagery only. Furthermore, loud cover and poor radiometric sensing data in remote areas can prevent complete observation. In order to address challenges like these, images were analysed by a computer and then manually edited to more accurately match glacial extent in the year that the image was taken. In order to prevent statistical errors, the research team focused on a select sample size of glaciers representative of the area being studied.

Satellite image analysis like that performed in Bhutan has become increasingly important in the study of climate change. In terms of glaciers, these analyses have proven valuable to scientists in reaching otherwise hard to access data. The main findings of the study were that glacial retreat in the last fifty years is significantly contributing to the creation of glacial lakes in the East Himalayan region and associated flood outbursts. A glacial lake outburst flood is a type of flood that occurs when the dam containing a glacial lake fails due to a buildup of water pressure. Bhutan has low lying river planes that are vulnerable to such floods, so measuring ice loss can help scientists identify which dams are at risk of bursting. This can further help policy makers take appropriate action to mitigate potential disaster.

Declassified Corona spy satellite image from the year 1974 showing the glaciers in Bhutan (Source:Joshua Maurer).
Declassified Corona spy satellite image from the year 1974 showing the glaciers in Bhutan (Source: Joshua Maurer).

Following the successful completion of the Bhutan study, Maurer and his team were granted additional funding from a NASA Earth and Space Science fellowship to expand the same methodology to other regions of the Himalayas. Understanding ice loss is important, and the effort to overcome logistical barriers is worthwhile.

“Ice loss will impact hydropower, agriculture, and ecosystems in the region,” Maurer told GlacierHub. Understanding the glacial ice balance in the Himalayan region and the rates of ice loss assists adaption plans for building strategic dams and reservoirs for seasonal water storage. These actions could result in more people being better off, more people receiving reliable electricity, and a reduced risk of moraine dam outbursts.

While observation of changing trends in glacier mass may not be complete, the information that is available due to declassified spy satellite imagery positively contributes to the Himalayan people’s capabilities regarding future impacts linked to ice loss, according to Maurer et al. Overall, results from spy satellite images have enhanced the understanding of potential glacier contribution to sea-level rise, impacts on water resources, and hazard potential for high mountain regions and downstream populations in Asia.