Photo Friday: The Summertime Lure of the World’s Iconic Glaciers

It’s summertime in the Northern Hemisphere. And for those of us that are able, the summer months can mean time off from work and an opportunity to venture near or far on a vacation.

Glaciers lie on each of the world’s seven large landmasses, meaning, while they’re often located in relatively remote areas, one needn’t travel to the polar regions to observe the remnants of the last Ice Age—which makes them a popular vacation draw.

New Zealand has the Southern Alps. Glaciers are found in each of the seven Andean nations: Venezuela, Columbia, Ecuador, Peru, Bolivia, Chile, and Argentina. The mountains of the American West, as well as Alaska, host glaciers. And, of course, there are the alpine peaks of southern Europe and the iconic, albeit much more remote, mountains of the “Third Pole.”

A survey of photo sharing websites, such as Flickr, reveals the enduring allure of the world’s glaciers, particularly as climate change and the threat it poses to the longevity of the world’s cryosphere becomes more and more apparent.

And therein lies a paradox.

So-called last-chance tourism is driven by interest in visiting the landscapes that are vulnerable to rising temperatures and more frequent and more intense extreme weather events. Yet with greater interest in these places comes increasing threats to their sustainability, whether due to carbon-intensive airline travel or the consumer waste that results from a simple visit to the refreshment stand at a national park. A recent study even sought to quantify the amount of summer sea ice in the Arctic that melts with each metric ton of carbon emitted by an individual.

Individual consumer decisions won’t bring the world significantly closer to zero emissions as long as decisions about how energy is generated, what modes of transportation are available, and how consumer goods are produced—the largest sources of carbon pollution—remain largely in the realm of the public sector, that is society-wide.

Visiting glaciers can heighten one’s understanding of the massive forces bound up in Earth’s climate and geology, which, perhaps for many people, explains their seduction.

Here’s a view of some of the world’s popular glacier destinations through the eyes of recent visitors.

An image of Alaska’s Columbia Glacier taken on July 10, 2019. (Source: dvs/Flickr)
A view of tourists visiting Mendenhall Glacier in Alaska (Source: Mulf/Flickr)
A cruise ship passes in front of Alaska’s Hubbard Glacier. (Source: zshort1/Flickr)
A view of Switzerland’s Aletsch Glacier taken on June 8, 2019 (Source: velodenz/Flickr)
Tourists on a hike at Norway’s Nigardsbreen Glacier on June 10, 2016 (Source: clare_and_ben/Flickr)

Read More on GlacierHub:

East and South Asia Are the Largest Sources of Black Carbon Blanketing the Tibetan Plateau

Dispatch From the Cryosphere: Amid the Glaciers of Antarctica and Chile

South Asian Perspectives on News of Rapid Himalayan Glacier Melt

Photo Friday: Alaska Glaciers in Old Pictures

This week’s Photo Friday features a special treasure: the historic pictures of Alaska glaciers. The images were selected from the special collection of Alaskan glacier surveys led by William O. Field during International Geophysical Year (IGY), 1957-1958.

These photos include Alaska glaciers like Columbia Glacier, Worthington Glacier, Grand Pacific Glacier, Northland Glacier, Lawrence Glacier, Ripon Glacier, and Yale Glacier, which are only a small part of the enormous collection. These photos represent an attempt to systematically study glacier change in Alaska. The photos can be accessed via National Snow and Ice Data Center.

[slideshow_deploy id=’5518′]

 

Alaska Mountain Glaciers Raise Global Sea Level

Alaska’s impact on global sea level rise is becoming more pronounced. Its melting glaciers, particularly the minority mountain glaciers, will be a major driver of sea level change in the coming decades, according to a new study conducted by Chris Larsen, research associate professor at the University of Alaska Fairbanks, and his colleagues.

The glacier world in Alaska. Photo credit: Stephen Kennedy (via Flickr).
The glacier world in Alaska. Photo credit: Stephen Kennedy (via Flickr).

With over 100,000 glaciers, Alaska is home to half of the world’s glaciers. Every seven years, glacier loss from Alaska contributes a 1-foot thick layer of water covering the state of Alaska. Though mountain glaciers hold less than 1% of the total glacier volume on the Earth, the recession of mountain glaciers contribute to nearly 1/3 of current sea level rise.

Larsen and his team examined 116 glaciers across Alaska to estimate ice loss from melting and iceberg calving between 1994 to 2013. Iceberg calving, the unique process of ice chunks breaking off at the edge of a glacier, is underlined in the study because few existing observations or models value the impact of iceberg calving under climate change.

“We’ve long wondered what the contribution of iceberg calving could be across the entire state,” O’Neel, one of the researches, told the American Geophysical Union.  The Columbia Glacier in Prince William Sound has retreated more than 12 miles mostly due to iceberg calving since 1980.

The University of Alaska Fairbanks collected airborne lidar altimetry data, highly specialized research aircrafts, as part of NASA’s Operation IceBridge mission since 2009. The mission aims to picture the Earth’s polar ice in unprecedented detail with innovative science instruments to better connect the polar regions with the global climate system.

NASA's Operation IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord. Source: NASA Goddard Space Flight Center (via Flickr).
NASA’s Operation IceBridge Survey Flight Over Saunders Island and Wolstenholme Fjord. Source: NASA Goddard Space Flight Center (via Flickr).

The team also integrated the new data with information from the 1990s collected by the University scientists and Keith Echelmeyer, a pilot, mountaineer and pioneer glaciologist. They developed a more detailed characterization of the size and shape of every glacier in Alaska, in addition to the glaciers of southwest Yukon Territory and coastal northern British Columbia.

With the new data inventory, the research team has made some significant discoveries. Across the years from 1994 to 2013, Alaska’s tidewater glaciers contributed to only 6% of Alaska’s mass loss. Glaciers that end in the ocean, called tidewater glaciers, make minimal contribution to sea level rise, while glaciers ending on land are primary contributors to mountain glacier mass loss driven by climate change.

“This work has important implications for global sea level projections. With improved understanding of the processes responsible for Alaska glacier changes, models of the future response of these glaciers to climate can be improved,” Larsen told the American Geophysical Union. Despite the fact that the impact of the large-scale tidewater glacier losses in Alaska is negligible, Alaska will remain a major contributor to global sea level rise through its mountain glaciers.

Roundup: Pollutants, Columbia Glacier Retreat, Cryo Consortium

Pollutants from Glaciers

“As glaciers increasingly melt in the wake of climate change, it is not only the landscape that is affected. Thawing glaciers also release many industrial pollutants stored in the ice into the environment. Now, within the scope of a Swiss National Science Foundation project, researchers from the Paul Scherrer Institute (PSI), Empa, ETH Zurich and the University of Berne have measured the concentrations of a class of these pollutants – polychlorinated biphenyls (PCB) – in the ice of an Alpine glacier accurately for the first time.”

Read more at PHYSORG.

 

Columbia Glacier is Retreating

“Scientists have long studied Alaska’s fast-moving Columbia Glacier, a tidewater glacier that descends through the Chugach Mountains into Prince William Sound. Yet the river of ice continues to deliver new surprises.When British explorers first surveyed the glacier in 1794, its nose extended to the northern edge of Heather Island, near the mouth of Columbia Bay. The glacier held that position until 1980, when it began a rapid retreat.”

Read more at Earth Observatory.

 

Inter-university Consortium

“For the first time, an Inter-University Consortium on Cryosphere and Climate Change (IUCCCC) is undertaking glacier studies in four States in India, funded by the Department of Science and Technology (DST). Also unprecedented is the participation of the University of Jammu and the University of Kashmir in this effort.”

Read more at The Hindu.