A third of Asia’s glaciers could be gone by 2100

Peaks of the Tien Shan, one of many regions in Asia’s high mountains with predictions of massive glacier loss by the end of the century (Source: NASA).

Asia will likely lose at least one-third of its glaciers by the end of this century, according to a recent study published in Nature. The ambitious target of keeping global average temperatures from increasing more than 1.5 degrees Celsius (or 2.7 degrees Fahrenheit) above pre-industrial levels set by the Paris Climate Accords won’t even be enough to curtail this fate, with rising temperatures having an outsized effect on glaciers in the high mountains of Asia.

“Our work shows that a global temperature rise of 1.5 degrees actually means a temperature increase of 2.1 degrees on average for the glacierized area in Asia,” Philip Kraaijenbrink, the lead author on the paper told GlacierHub. “We show that even if the world meets this extreme ambitious target, thirty-six percent of the ice volume will be lost by 2100.”

The goal of 1.5 degrees is generally regarded as extremely ambitious, and Kraaijenbrink and his team found that under more realistic scenarios, ice loss will be between 49 and 64 percent. Meltwater from those glaciers supply water to 800 million people. A loss of even one-third of the glaciers in the region has the potential for serious consequences for water management, food security, and energy production. Kraaijenbrink’s study stops short of investigating the actual impact this loss may have on people, and it is difficult to predict exactly what the future will hold for communities downstream of these glaciers.

Anna Sinisalo, a glaciologist with ICIMOD, who was not associated with the study, told GlacierHub, “There is also a need to reconstruct historical variability of climate to better understand the ongoing change, as without knowing the past we cannot make reliable predictions about the future.” However, this research is still a necessary step to understand how increasing temperatures will affect the region.

In addition to showing that a warming world will lead to losses of glaciers, the researchers also found large differences in how glaciers in the region would respond to climate change. Much of this is due to the characteristics of the individual glaciers, like the amount of debris cover, or differences in local precipitation and temperature projections. Places like Hindu Kush and Pamir, for example, will experience a mean increase in temperature over 2 degrees, while other locations like the Central Himalayas will be closer to the global mean increase.

This map shows the differences in glacier loss under various climate projections and the regional differences in temperature increases under a 1.5 degree Celsius scenario (Source: Kraaijenbrink et al.).

The team achieved their results by running their model across several climate scenarios and produced a map that showed the differences in glacier loss in different areas under different climate projections. In particular, their model looked at the effects of different Representative Concentration Pathways (RCPs). These pathways range from scenarios that project under 2 degrees Celsius warming (RCP2.6) up to more than 5 or 6 degrees warming (RCP 8.5). The numbers after RCP represent the amount of radiative forcing, which is the difference between the amount of heat from the sun that enters the earth’s atmosphere and the amount of radiation emitted back out into space from the earth. RCP 8.5 is often described as a “baseline” or “business-as-usual” scenario where little or nothing is done to combat climate change.

Of course, there is a fair amount of uncertainty in this research. It is unclear how much the climate will change in the coming decades. For the most part, it depends on how the world tackles carbon emissions, which is why the researchers “included the entire scope of climate projections for this very reason.” Kraaijenbrink and his team also collaborated with other glacier modelers in the Glacier Model Intercomparison Project. According to Kraaijenbrink, “The aim of this is to reduce uncertainties in glacier projections in order to provide better predictions to be used for impact studies and by policymakers.”

The researchers paid special focus to debris-covered glaciers because up until now these glaciers in Asia were not well represented in the models. As part of the study, Kraaijenbrink found that about 11 percent of Asia’s high mountain glaciers are covered with debris, with the largest relative coverage in Hindu Kush.

Debris-covered glaciers are particularly difficult to model because researchers have to take into account how the rocks and other materials covering the glacier will affect retreat. In many cases, the debris insulate or protect the glacier from some amounts of radiation and warming. According to Kraaijenbrink, incorporating the debris-covered glaciers in their model allowed them to get a better estimate of future mass loss and understand how different glaciers in different areas would behave.

While the researchers looked at the effects of all RCPs in the region, Kraaijenbrink says the team chose to spotlight the study on 1.5 degrees because “the IPCC specifically requested studies that consider the effects of limiting temperature rise to 1.5 degrees.” The IPCC is currently preparing a report on the effects of 1.5 degrees of warming, and likely this research will be included to assess the seriousness such a temperature increase.

The study pays close attention to the effects of climate mitigation on glacier shrinkage. Christian Huggel, a glaciologist at the University of Zurich, who was also not affiliated with this study, told GlacierHub that the research “shows concretely what different mitigation policies imply for the glaciers in the high mountains of Asia. And that [there’s] actually a huge difference whether we will be successful in reducing emissions (like 1.5°C warming of RCP2.6), or not (RCP8.5).”

The urgent need for mitigation becomes more evident as the body of research showing the massive effect of anthropogenic climate change, from the tropical Andes to the high mountains of Asia, grows. This urgency, in turn, may hopefully stimulate more effective action to combat climate change.

Please follow, share and like us:

Learning from a Flood-Alarm System’s Fate

A longer version of this post appeared in the April 2017 issue of EcoAmericas.

When a flood from a mountain lake threatened to swamp the town of Carhuaz in the Peruvian Andes early one morning in April 2010, Víctor Rodríguez was the only person who knew. From his hut on a plain below the mountain, he heard the jet-like rumble as a block of ice calved off a glacier and crashed into the lake. The force of the fall produced a wave that swept over the earthen dike around the water body, called Lake 513, and cascaded down the steep slope. Rodríguez watched as the water swirled across the plain, swamping the catchment for the municipal water system, where he worked as caretaker. Picking up speed as it funneled into the Chucchún River, the torrent of water carrying mud and boulders swept away crops, livestock and some buildings. But it stopped just short of the town of about 12,000 people beside the Santa River, at the foot of Peru’s Cordillera Blanca.

Workers installing glacial lake outburst flood-monitoring equipment at Lake 513, which residents from several villages in the region tore down in November 2016 (Photo courtesy of CARE Peru).

The Destruction of an Early-Warning System

With climate change increasing the threat of such hazards, the Swiss government’s development agency, a Peruvian nonprofit, and a Swiss university teamed up to develop a high-tech early-warning system. By the end of 2013, lakeside sensors and cameras were in place above Carhuaz, with relay antennae that could transmit information quickly to a command center in the municipal offices. Once its kinks were worked out, the organizers of the project hoped the system could serve as a model for other towns that lie below glacial lakes. Then disaster struck again, this time in the form of a drought. Not only was rain scarce, but an unseasonable frost damaged crops. Rumors spread among residents of the farming communities around Carhuaz that the monitoring equipment at Lake 513 was preventing clouds from forming. Early one morning last November, several hundred people from the largely indigenous communities, where traditional Andean beliefs still hold sway, trekked up to the lake and tore down the system. Within a week, it rained.

The events raise questions about how to ensure that in areas where rural residents distrust technology, systems can be created to reliably warn those in the path of Carhuaz-style deluges, known as glacial lake outburst floods, or GLOFs. It also highlights tensions between growing urban areas and their rural neighbors— tensions that could deepen as dense development encroaches on agricultural land and city dwellers demand a larger share of water from threatened sources.

The destruction of the Carhuaz early-warning equipment came as a shock to the system’s developers, but in hindsight, signs of discontent had been building. During workshops in 2012, residents said they felt unprotected against outburst floods like the one in 2010, says Karen Price Ríos of CARE Peru, a nonprofit development organization that has been active in the area for several years. Price worked with local communities on the three-year early warning project, which was funded by the Swiss aid agency COSUDE and supported by researchers from the University of Zurich. The researchers drew up a risk map, showing the areas in varying degrees of danger from a mudslide like that of 2010, and devised evacuation routes, marking them with signs. The centerpiece of the project was the early-warning system on Mount Hualcán. If a block of ice broke from the glacier and crashed into Lake 513, it would trigger sensors that would turn on cameras and send an alert to local officials. They could then check the images from the cameras to verify the flood and sound an alarm.

Lakes like this one in Peru’s Cordillera Blanca grow larger as glaciers retreat, posing a risk of outburst floods (Photo by Barbara Fraser).

The early warning would give local residents about half an hour to evacuate to safety zones. One monitoring station was installed at Lake 513, some 4,491 meters above sea level, with additional equipment several hundred meters higher. A repeater down in the valley boosted the signal before it reached the municipal offices in Carhuaz, at 2,641 meters above sea level. Another monitoring station— on the plain below Mount Hualcán, beside the upper part of a system of irrigation canals and the intake for Carhuaz’s drinking water system— gathered water-level and flow data from the Chucchún River.

The system was installed in 2012. In 2015, CARE’s Glacier Project in Carhuaz officially ended and the system was turned over to the Carhuaz provincial government headed by Mayor Jesús Caballero García, who had taken office in January. Though the head of the local disaster management office could monitor the system, the government lacked funds for specialized maintenance, Caballero says. “We didn’t have personnel trained to evaluate the entire system and say whether it was functioning,” he says.

In 2016, lack of rain became a more pressing concern than an outburst flood for farmers in the rural communities along the Santa River and its tributaries, including the Chucchún. It is not clear when people began to blame the equipment on Mount Hualcán, but in February 2016, one local leader asked Caballero to remove it. Two months later, vandals stole the cameras from the lakeside monitoring station. It might have been an ordinary theft, but observers note that it would be difficult to fence the specialized cameras in local black markets.

CARE and COSUDE agreed to replace the stolen cameras, but before arrangements could be made, leaders from several surrounding communities again demanded that the equipment be removed. A town hall-style meeting was scheduled for November to discuss the problem, but on Nov. 24, several hundred people from surrounding communities marched up the mountain to the lake. Caballero says he accompanied the group to persuade the protesters to leave the equipment in place, but after a few tense hours, they tore down what was left of the equipment beside the lake and the monitoring station on the plain below.

The Search for an Explanation

A few months later, some embarrassment seemed to have set in. It is difficult to find people who will admit to dismantling the equipment, although some will talk about the beliefs that led to the action— that the equipment “blew the clouds away,” or that it might have been placed there to benefit some outside interest, such as a mining company. It was not the first time equipment had been blamed for unfavorable weather near Carhuaz. Nearly two decades ago, farmers demanded that another researcher remove meteorological monitoring devices from the mountain. “People have a very close relationship with the mountains,” says geographer Christian Huggel of the University of Zurich. “The snow-capped peaks are living beings.”

Below Mount Hualcán and Lake 513, the Chucchún River and an irrigation canal run through a plain where a second monitoring station was torn down by residents during the drought (Source: Barbara Fraser).

With time, however, a more complex picture of the tensions over the Carhuaz early-warning system have emerged. In workshops with Glacier Project staff shortly after the 2010 outburst flood, people in both Carhuaz and the surrounding farming communities identified floods as the greatest natural hazard they faced. Climate change, it seemed, was on everyone’s mind. And in a study conducted during 2012-14, sociologist Luis Vicuña found that when discussing risks, people in the farming communities around Carhuaz spoke of climate change in virtually the same terms they had heard in the workshops. But when Vicuña changed the question slightly, he found that farmers were actually more concerned about their supply of irrigation water—whether they would continue to have enough water, and how much of a say they would have in managing it.

The water worries reflected tensions between the farming communities and the town of Carhuaz, where population growth has pushed the urban limits farther into the countryside. Farms have been shrinking as demand for food has been increasing, Vicuña says. The expanding urban population has increased demand for drinking water, too, says Lindón Mejía, who manages the city’s water and sanitation system. Since the timing of the Glacier Project happened to coincide with plans to expand Carhuaz’s potable water system, the drought may have exacerbated fears of more water being used for the urban area.

At the heart of those fears is concern that less irrigation water will be available for rural residents, who in addition face a lower risk of outburst-flood damage than town dwellers since they live on higher ground. Such tensions, combined with local urban and rural political dynamics, probably created fertile ground for rumors that led the crowd to tear down the monitoring stations, Vicuña says. Glacier Project staff made a concerted effort to forge consensus, meeting with people in the urban area and in the villages closest to Carhuaz. But many of those who climbed the mountain to pull down the monitoring equipment were from villages outside the area that would be in the path of an outburst flood from Lake 513. They knew little about the system and did not stand to benefit from it, Vicuña says. CARE and COSUDE decided not to reinstall the system at Lake 513, although COSUDE will finance a similar system around Santa Teresa, in the southern Peruvian region of Cusco.

The Glacier Project included the designation of evacuation routes and placement of signs marking paths to safety in case of an outburst flood (Source: Barbara Fraser).

Lessons Learned

Meanwhile, researchers, project staff and government officials puzzle over what could be done differently next time. Any such project, whether in Huaraz or elsewhere, should involve more extensive studies of local communities and political positions, Vicuña says. Another possibility might be to turn local residents into citizen scientists. Anthropologist Ben Orlove of Columbia University says the citizen scientists might be invited to help gather data and become part of the study, rather than simply witnessing the installation of instruments they don’t understand. And when new local government officials take office, attention must be paid to ensure that they will take responsibility for early-warning systems installed by their predecessors, says Martin Jaggi, COSUDE’s director of global cooperation programs.

The question will only become more critical. The Andes Mountains are home to the largest expanse of tropical glaciers in the world, but the ice fields have been shrinking significantly over the past half-century. A warmer climate means glaciers will continue to recede, and their meltwater will feed lakes high above valley towns. This, in turn, will heighten the risk of outburst floods.

Despite the dismantling of its early-warning equipment, Carhuaz is nevertheless better protected than it was before, Huggel says. Government officials and residents are more aware of the outburst-flood risks, evacuation routes are clear, and the personnel who keep watch over the city’s drinking water intake 24 hours a day can radio a message to the town in case of a flood. It is estimated that town residents can expect warnings 10 to 15 minutes before outburst waters arrive. That’s significantly less time to evacuate than the 30 minutes promised under the high-tech system originally envisioned, but the current plan still could be efficient, Huggel says. He adds: “The early warning system is much more than just instruments.”

Please follow, share and like us: