Photo Friday: Nevados de Chillán at Risk of Volcanic Eruption

Chile’s National Geology and Mining Service has issued an orange alert for Nevados de Chillán, a complex of snow-capped stratovolcanoes located in the Ñuble region near the country’s border with Argentina.

The agency’s level-orange alert signifies a significant uptick in volcanic activity.

According to NASA’s Earth Observatory: “Like other historically active volcanoes in the central Andes, the Nevados de Chillán were created by upwelling magma generated by eastward subduction, as the dense oceanic crust of the Pacific basin dove beneath the less dense continental crust of South America. The rising magmas associated with this type of tectonic environment frequently erupt explosively, forming widespread ash and ignimbrite layers. They can also produce less explosive eruptions, with voluminous lava flows that layer together with explosively erupted deposits to build the classic cone-shaped edifice of a stratovolcano.”

According to Chile’s geology and mining agency: “The main volcanic hazards associated with the CVNCh correspond to lahars, debris flows and lava flows, channeled through the main valleys: Estero Renegado, Estero Shangri-La, Chillán River, Estero San José, Santa Gertrudis River, Gato River and Las Minas River . The generation of lahars configures the greatest potential danger for the population surrounding the volcano, given its proximity to the channels and the amount of snow and ice on the summits of the complex. Ash fall determined by the dominant wind direction.”

A view of Nevados de Chillán from the International Space Station (Source: NASA)

Read more on GlacierHub:

The Enduring Allure of Glaciers Among Popular Beverage Companies

Video of the Week: British Royals Visit Chiatibo Glacier in Pakistan

Glacial Ice Core Samples Reveal Sustainable Land-Use Practices in the Ancient Incan Empire

New Satellite Imagery Shows Rapid Pace of Andean Glacier Melt

Climate change has long been known to be a stressor on glaciers the world over, but a recent study published in Nature Geoscience, reveals just how bad it’s been for those in the Andes: Glaciers in this South American mountain range have the unfortunate distinction of being both the fastest melting and the largest contributors to sea level rise in the world.

Glacial melt has been watched carefully for decades, but because of limitations in technology and methodologies, scientists haven’t gotten the most precise picture of how much melting is occurring, or how fast.

Previous techniques looked at regional locations scattered throughout the Andes like the Northern Patagonian Icefield and then extrapolated those findings. Others gave hazy estimates from low-resolution, remote-sensing images. But these methods can miss individual glaciers and clusters of just a few or more.

In an attempt to refine understanding of Andes-wide glacial melt, the researchers harnessed the image-collecting power of a satellite with the Asimovian name of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). ASTER has been taking high-resolution, stereoscopic images of the Andes since 2000. By compiling these images and integrating them into digital models, the study’s scientists were not only able to get a new ice loss estimate for the entire Andes, but also for individual regions and individual glaciers over the past two decades. 

With this high resolution dataset, the researchers determined that the entire glacial range in the Andes shrunk about 23 gigatons (1 gigaton=1 billion tons) since 2000—more than previous studies have found—and account for 10 percent of global sea level rise. At this rate, some of these ancient glaciers will be gone in just over two centuries—but the rate is accelerating.

Digging through the data, the researchers also parsed out an array of differing melt rates between glaciers that revealed the areas of the heaviest melting: Patagonia (Chile, Argentina) and the tropical Andes (Colombia, Ecuador, Peru, and Bolivia). Previous research has shown that low altitude glaciers in some of these areas like Peru have lost as much as 50 percent of their mass since 1970.   

“[Patagonia] is the region that contains the largest surface of ice, and [so] it’s normal to expect that the highest loss is going to be there,” lead author and glaciologist Inés Dussaillant told GlacierHub over the phone, adding that glaciers terminating in oceans and large lakes like those in Patagonia also experience heavy amounts of calving—which accounts for more than half of all the ice mass loss observed in the Andes. The glaciers in the tropics—mostly in Ecuador and Colombia—Dussaillant explained, are relatively small and highly sensitive to changes in climate. “A small change in temperature can make tropical glaciers lose a lot of mass,” she said. 

Glaciar el Juncal, Región de Valparaíso, Chile (Credit: Eyal Levy)

Perhaps the most troubling of the team’s findings, however, dealt with glaciers’ contribution of freshwater to rivers through snow and ice melt. During the summer months, snow and ice melt from glaciers flows into streams and rivers, adding to the overall water availability of a particular region. This is particularly important in the Dry Andes of the northern and central regions of Chile and Argentina. Since 2010, these heavily populated semi-arid regions have been strapped in what climatologists have called a megadrought. The team found that increased glacial melting in these areas since 2009 actually helped to mitigate some of the most severe impacts of the drought. But as glaciers continue to shrink because of anthropogenic climate change, their ability to act as this natural salve is going to diminish or disappear.

“They are not going to be able to contribute to rivers eternally,” remarked Dussaillant. “There will be a moment where they’ll no longer be able to contribute during these periods of drought.” 

Campos de Hielo Sur, Parque Torres del Paine Región de Magallanes, Chile
(Credit: Eyal Levy)

This point highlights the larger implications of the study, which is that millions of people live near, and depend upon, these glaciers in the Andes, and the drastic reduction or total disappearance of them is going to have potentially severe consequences. Dussaillant, who is Chilean, pointed out that more than half of the population of Chile lives in or near the capital city Santiago, which lies in this region.

Eyal Levy, an industrial engineer and Andean climber who is also from Chile, told GlacierHub that Chileans are “starting to become very worried about the water stress. He added that rural areas and poorer communes around Santiago have been “seriously impacted.” 

Glaciers are a conspicuous part of the everyday scenery, Levy said, and their shrinking takes a toll on people’s emotions. “People talk about melting glaciers with sadness, worry, and without knowing what to do,” he said.

Dussaillant hopes that the high resolution dataset gathered from this study will be used by other glaciologists for local or regional studies. “I study glaciers because they tell us what is happening,” she said. “It’s showing us that climate is changing, and the climate is a global thing. So what’s happening in the Andes … it concerns us all.” 

Read More on GlacierHub:

A Two-Century-Long Advance Reversed by Climate Change

Roundup: Tropical Glaciers, Experimental Cryoconite, and Grand Teton National Park

Making Connections at the 2019 International Mountain Conference


Dispatch From the Cryosphere: Amid the Glaciers of Antarctica and Chile

As my year of research on glacier dynamics and water security in Chile came to a close in December 2018, I started searching for ways to put my newfound knowledge to good use while also soaking up the Patagonian summer. Through a bit of finesse and luck, I found a glacier education and guiding position for a polar expedition cruise company called One Ocean Expeditions. I felt like I was walking in a dream as I boarded an ice class cruise ship departing from Ushuaia, Argentina.

Through the five trips I worked on earlier this year, I had the great fortune to visit and interpret a myriad of glaciers from the shallow coves of the Antarctic Peninsula to the deep labyrinth of the Chilean fjords. Each glacier told a unique story, but a common theme emerged that links them all. While these massive, flowing systems may humble us with their power and enormity, they are deeply sensitive to their surroundings and profoundly affected by human-induced climate change.

There were four sites in my travels from the Antarctic Circle (66°33’S) north to Santiago, Chile (33°25’S) that best illustrated this duality for me.

Wilkinson and Murphy Glaciers, Crystal Sound, Antarctica

The sun peaked over the horizon as we crossed into the Antarctic Circle and washed an orange light over the endless whiteness of the Stefan Ice Piedmont and Wilkinson and Murphy Glaciers. I couldn’t ask for a more majestic first glimpse of Antarctica.

Stefan is a modest size for an ice piedmont, a term to describe a low-lying expanse of ice that gradually slopes from the edge of a mountain to the sea. In comparison, the Wilkinson and Murphy Glacier complex is quite large, serving as an outlet for the Antarctic Peninsula Ice Shelf through a network of multiple glacial valleys that converge to tumble down to the sea.

We waded through a bay of asymmetrical, peculiar icebergs that rivaled the size of our eight-story ship. Unlike the more uniformed, tabular icebergs we later encountered, which had neatly separated from ice shelves, these icebergs likely calved off Wilkinson and Murphy or a neighboring tidewater glacier.

A view of the Wilkinson and Murphy Glaciers in Antarctica (Source: Kate Cullen)
Icebergs adrift near the Wilkinson and Murphy Glaciers in Antarctica (Source: Kate Cullen)

Crystal Sound set the stage for Antarctica as a dreamy, vast-beyond-comprehension, and complex continent of ice—a place that feels other-worldly until you realize these calving glaciers and massive melting icebergs feed the same ocean we all share.  

Avalanche and Astudillo Glaciers, Paradise Harbor, Antarctica

Moving north, Paradise Harbor proved to be my favorite stop on each trip. It offers the best of the Antarctic Peninsula in mid-summer—calm and beautiful scenery, feeding humpback whales, porpoising penguins, and playful seals. We would start the day with a hike from the Almirante Brown Argentine base to a gentoo penguin colony and up to a bluff with a sweeping view of the massive Avalanche and Astudillo Glaciers.

Avalanche Glacier offers a prime location for observing Antarctic wildlife. (Source: Kate Cullen)

One of my colleagues commented that in the seven years she has visited Paradise Harbor, she’s witnessed Astudillo Glacier recede noticeably. I’m yet to find an up-to-date study that could corroborate or rebut this observation, but it would be consistent with the behavior of the glacier in the late 20th century—displaying a frontal recession from 1973 to 1989 to the LIMA observations in the early 2000s.

A view of the Avalanche Glacier (Source: Kate Cullen)

Astudillo isn’t an isolated case. We know that in the second half of the 20th century, 87 percent of glaciers on the Antarctic Peninsula were in a state of retreat. This widespread trend of melting, as well as rapid temperature increases and the collapse of two major ice shelves, has made the Antarctic Peninsula one of the many ground zeros of climate change.

While our days were tranquil, I wondered what the collapse of the Larsen B Ice Shelf, just over the ridge, felt like here and what the break-up of the even larger Larsen C Ice Shelf will bring.

Serrano Glacier, Cordillera Darwin Ice Field, Chile

Although they were connected until about 40 million years ago, the Antarctic Peninsula and southern tip of South America today feel like two separate worlds. The hardy, dwarfed vegetation of the Cordillera Darwin is a wash of green in comparison to the Antarctic landscape, and the glaciers are smaller, more active, and radiate a rich blue hue.

Serrano is a northern-facing glacier deep in the Agostini Fjord and outlet for the Cordillera Darwin Ice Field, the third largest expanse of ice in South America. On a sunny and wind-free morning, we maneuvered closer to Serrano’s face and marveled at a thick medial moraine that traced up to the convergence of two upper branches of the glacier.

The Serrano Glacier, Chile (Source: Kate Cullen)

The Serrano Glacier, like the vast majority of glaciers in the region, is losing mass. Between 2000 and 2011, its area thinned at an average rate of about 1.0±0.4 meters of water equivalent per year and, overall, the Ice Field lost an average of -3.9±1.5 gigatons of ice per year.

What struck me about Serrano is how gorgeous, massive, and storied it is, while remaining practically anonymous—located in a region that few have even heard of, Serrano is rarely visited or studied.  

Pío XI Glacier, Southern Patagonia Ice Field, Chile

In contrast, Pío XI, also known as Brüggen Glacier, is one of the most famous glaciers in South America. At a whooping 1,300 square kilometers, it is about as large as Los Angeles and is the biggest glacier on the continent—and one of the only that is advancing.

Between 1945 and 1995, Pío XI advanced 10 kilometers at speeds of up to 50 meters per day, paving over 400-year-old trees and sealing off the upper section of the fjord, which brought about the formation of a lake. It has since slowed considerably, as warmer temperatures have caused more precipitation to fall as rain instead of snow and its primary flow path has shifted from the south terminus to the north.

Scientists surmise that Pío XI surged, while its neighbors continued retreating, possibly because of high snow accumulation in its abnormally large basin, fjord-glacier interactions, elevated water pressure beneath the glacier, changes in geothermal activity, or sediment build-up at its terminus.

Chile’s Pío XI Glacier spans an area about as large as that of Los Angeles. (Source: Kate Cullen)

Such a famous and peculiar glacier, I could barely contain my excitement as we cruised into Eyre Fjord and watched the gargantuan, blue mass come into focus from the upper deck. I trailed behind Australian glaciologist Ian Goodwin with his black beret and sharp goatee as we walked along Pío XI’s wide southern terminal moraine and searched for the source of a sediment-rich stream gushing out from the bottom of the glacier.

Pío XI was unlike any other glacier we’d seen—the water was saturated with sediment and free of icebergs, the face was a modest height and sloped away from us, and we observed no calving events that day. The preposterous amount of sediment and continuous purge of meltwater begged a closer look. We scribbled notes and took pictures to report back to colleagues and pondered how we could return with a scientific purpose.  

A cryosphere in crisis

The recent headlines in Greenland remind us the cryosphere is changing faster than we can grasp. Our modeling and monitoring is more accurate than ever, but the general public is just beginning to understand the complexity and urgency of the issue.

I found that these cruises offered a powerful platform to connect with folks from across the political spectrum through an immersive and emotional crash course in glaciology. I’m not yet sure how, but there must be a way we can create equally moving but more accessible and sustainable educational opportunities. As I reflect comfortably at home, Wilkinson and Murphy, Avalanche and Astudillo, Serrano, and Pío XI continue to flow.

Read More on GlacierHub:

Dispatch from the Cryosphere: Glacier Decrease in the Georgian Caucasus

South Asian Perspectives on News of Rapid Himalayan Glacier Melt

Ancient Humans of Glaciated Western China Consumed High-Potency Cannabis

Photo Friday: These Glacier-Covered Volcanoes in Chile Could Soon Erupt

Stretching over 7,000 kilometers across seven countries, the Andes are the world’s longest mountain range. They make up the southeastern portion of the Ring of Fire and are well-known for their abundant volcanoes.

The Chilean Andes are home to 90 active volcanoes, all monitored by the Chilean National Geology and Mining Service (Sernageomin). The agency categorizes volcanic activity using four distinct alert levels: green (normal level of activity), yellow (increased level of activity), orange (probable development of an eruption in the short-term), and red (eruption is ongoing or imminent). Increased volcanic activity is associated with frequent earthquakes; plumes of gas, rocks, or ash; and lava flows.

Two areas monitored by Sernageomin are currently showing signs of increased activity: the Nevados de Chillán and Planchón-Peteroa volcanic complexes. The agency issued orange and yellow alert levels for them, respectively.

A satellite image of the Nevados de Chillán volcano complex, showing the glacier-covered volcano peaks (Source: Sernageomin).

Nevados de Chillán Volcanoes: Orange Alert

The Nevados de Chillán volcano complex is comprised of several glacier-covered volcanic peaks. When these volcanoes erupt, the glacial ice sitting atop them melts and mixes with lava, which can result in dangerous lahars, or mudflows. Several small earthquakes and the formation of new gas vents led Sernageomin to issue a yellow alert on December 31, 2015. (To view a detailed map of the Nevados de Chillán complex, click here.)

On April 5, 2018, Sernageomin upgraded the Nevados de Chillán’s yellow alert to an orange alert, following thousands of tremors and a thick, white column of smoke rising from the area. This signaled the likelihood of an eruption in the near future.

Sernageomin’s most recent volcanic activity report for Nevados de Chillán, issued on February 11, 2019, cited persistent seismic activity, which is directly related to increased frequency of explosions, along with the growth and/or destruction of the lava dome that lies in the crater. The expected eruption is most likely to have moderate to low explosive power, but sporadic observations over the last year have shown higher than average energy levels.

On February 15, 2019, the Volcanic Ash Advisory Center in Buenos Aires documented a volcanic-ash plume reaching 3,700 meters high at Nevados de Chillán, an example of the above mentioned “higher than average energy levels.”

Read more on GlacierHub:

Eruption in Glacier-covered Volcano in Chile

A Glacier-covered Volcano in Chile: Will It Erupt Soon?

Photo Friday: Code Yellow at Mount Veniaminof

Images Show Active, Glacier-Covered Volcanoes in the Russian Far East 

Video of the Week: What Glacier Melt Means for Humpback Whales

In our Video of the Week, marine biologists examine how climate change might impact humpback whales in the waters off the coast of Chile. Melting Patagonian glaciers add freshwater to the ocean ecosystem, which is likely to change the water’s chemical composition, threatening the food supply of humpbacks.

Climate change is already affecting humpback migration patterns in other parts of the world. And changing climate conditions around Svalbard, Norway is altering the habitat of white whales.

The video, shared by the AFP news agency, emphasizes the importance of protecting vulnerable, marine ecosystems.

Researchers utilized buoys to gather information. Buoys can be useful in measuring such things as temperature, salinity, and pH levels, which can help monitor ecosystem changes and make projections about future conditions.

Check out more news on GlacierHub:

Millennial Climate Effects on a Lake Ecosystem in Southern Chile

GLOF Risk Perception in Nepal Himalaya

Argentina’s Retreating Turbio Glacier Creates a New Lake

Argentina’s Retreating Turbio Glacier Creates a New Lake

Turbio Glacier is at the headwaters of Argentina’s Turbio River and flows into Lago Puelo. The glacier descends east from the Chile-Argentina border at 1,500 meters, descending into a low-slope valley at 1,300-1,000 m.

From 1986-2018 this glacier like many others nearby has retreated substantially leading to development of a new lake. Wilson et al. (2018) noted a substantial growth in the number of lakes in the Central and Patagonian Andes due to the ongoing rapid retreat. Masiokas et al. (2008) reported that significant warming and decreasing precipitation over the 1912–2002 interval in the region. Harrison et al. (2018) observed the number of glacier lake outburst floods have declined despite the increase in lakes.

Turbio Glacier retreat from 1986 to 2018 in Landsat images. Red arrow is 1986 terminus location, yellow arrow 2018 terminus location, and pink arrow glacier across the border in Chile.

In 1986 the glacier terminated at the southeast end of a buttress at the junction with another valley (red arrow in the image above). The glacier was 4.3 kilometers long and was connected to a headwall segment that extends to 1,500 m. There is no evidence of a lake at the terminus of Turbio Glacier.

Across the divide in Chile, the glacier, seen with a pink arrow in the above image, has a length of 3 km. In 1998 the retreat from 1986 has been modest and no lake has formed at Turbio. Across the border in Chile the glacier has divided into two sections.

Turbio Glacier retreat from 1998 to 2017 in Landsat images. Red arrow is 1986 terminus location, yellow arrow 2018 terminus location and pink arrow glacier across the border in Chile.

By 2017 Turbio Glacier has retreated exposing a new lake. The glacier is essentially devoid of retained snowpack, illustrating the lack of a significant accumulation zone that can sustain it. Across the border in Chile the glacier has nearly disappeared with the lower section revealing a new lake and little retained snowpack indicating it cannot survive.

By 2018 Turbio Glacier has retreated 1.3 km, which is over 30 percent of its total length in 32 years. The glacier is separated from the headwall glacier, which can still shed avalanches onto the lower glacier. It is possible that with additional retreat another lake will be revealed in this valley. The substantial retreat here is comparable with that of nearby Argentina glaciers such as Pico Alto Glacier and Lago Cholila . The retreat is greater than on Tic Toc Glacier to the southwest in Chile.

Turbio Glacier in a Digital Globe image from 2013. Red arrow is 1986 terminus location, yellow arrow 2018 terminus location, blue arrows show glacier flow, and pink arrow indicates glacier across the border in Chile. The border is also indicated.

RELATED: A Survey of the UNESCO Andean Glacier Water Atlas

RELATED: Reviving the Quechuan Language

RELATE: The Struggle for Water in the Andes

Erasmo Glacier, Chile Terminus Collapse and Aquaculture

Cerro Erasmo at 46 degrees South latitude is a short distance north of the Northern Patagonia Icefield and is host to a number of glaciers, the largest of which flows northwest from the mountain. This is referred to as Erasmo Glacier with an area of ~40 square kilometers. Meltwater from this glacier enters Cupquelan Fjord, which is host to a large aquaculture project for Atlantic salmon, producing ~18,000 tons annually. This remote location allows Cooke Aquaculture to protect its farm from environmental contamination.

Runoff from Erasmo Glacier is a key input to the fjord, while Rio Exploradores’s large inflow near the fjord mouth limits inflow from the south. Davies and Glasser (2012) mapped the area of these glaciers and noted a 7 percent decline in glacier area from 1986-2011 of Cerro Erasmo. The recent retreat of the largest glacier in the Cerro Erasmo massif indicates this area retreat rate has increased since 2011. Meier et al (2018) note a 48 percent reduction in glacier area in the Cerro Erasmo and Cerro Hudson region since 1870, with half of that occurring since 1986.

In 1987 Erasmo Glacier had a land-based terminus at the end of a 6-km-long, low-sloped valley tongue. The snowline was at 1,100 meters.  In 1998 there is thinning but limited retreat, and the snowline is at 1,250 m.

By 2013 a proglacial lake had formed and there are numerous icebergs visible in the lake (Note Digital Globe image). The snowline is at 1,200-1,250 m in 2013 at the top of the main icefall. By 2016 a large lake had formed, and the snowline is at 1,200 m again at the top of the icefall.  By 2016 the terminus has retreated 2.9 km since 1987, generating a lake of the same length.

Erasmo Glacier retreat in Landsat image from 1987 and Sentinel image from 2018. Red arrow is 1987 terminus, orange arrow 2016 terminus and yellow arrow 2018 terminus. Points A-D mark areas of expanding bedrock exposure. (Source: Digital Globe)

The snowline in 2016 was at 1,200 m at the top of the icefall. From 2016 to 2018 a further 0.9 km retreat occurred. The 3.8 km retreat from 1998 to 2018 is a rate of ~200 m/year. Thinning upglacier to the expanding ridge from Point A-D is evident. Thinning at Point C has eliminated the overflow into the distributary glacier that had existed. The collapse is ongoing as indicated by the number of icebergs in the lake in 2018. There is an increased glacier surface slope 1 km behind the 2018 glacier front, suggesting the lake will not extend passed this point.

Breakup of Erasmo Glacier terminus in Digital Globe image from 2013. Purple arrow indicates largest iceberg. (Source: Digital Globe)

The retreat is consistent with retreat documented at Reichert GlacierHornopirén Glacier, and Cordillera Lago General Carrera Glacier. The impact on inflow to Cupquelan Fjord due to glacier retreat will be increased stream runoff during the wet winter season and reduced flow during the drier summer period December-February.  The summer season is still relatively wet.

This article originally appeared on From a Glacier’s Perspective, a blog published by the American Geophysical Union. 

Inside the Gut of the Patagonian Dragon

The stonefly is the largest animal inhabiting the glaciers of Patagonia. What the inch-long insect eats and excretes on the ice is central to the overall glacier ecosystem. Also known as the Patagonian Dragon, the stonefly occupies a near-apex position in the truncated glacier food chain. Stonefly larvae develop in glacial meltwater pools, where the larvae spends most of its life as a waterbound nymph, consuming algae, fungi, and other small inhabitants found in cryoconite sediments. The wingless adults wander the ice surface in search of food and mating opportunities. Despite their significant influence on glacier biogeochemical cycles, glacier invertebrates like the stonefly and their associated bacteria remain understudied. New research published in the journal Environmental Microbiology provided the first look at the genetics underlying the gut microbiome of stonefly nymphs.

The research team, comprised of Japanese and Chilean scientists, traveled by horseback and camped at Tyndall Glacier in Chile, collecting samples for analysis in a Tokyo laboratory. The team were surprised to find some bacteria in the stonefly gut were not present on the glacier surface. Not only was the bacteria absent from the surface of the Tyndall Glacier, but they were also distinct from bacteria catalogued in other glacier environments, indicating a symbiotic relationship between the Patagonian stonefly nymph host and its gut bacteria. The stonefly nymph provides an enriching gut environment and in turn the bacteria aids in the insect’s nutrition and material cycle of the glacier environment.

The Tyndall Glacier is one of the largest glaciers in the Southern Patagonian Ice Field (Source: Takumi Murakami).

 

Insects and animals, including humans, host a variety of microorganisms in their digestive tracts. These microorganisms and other bacteria, called gut flora, help perform a variety of functions critical to the health of their host. For example, humans lack enzymes necessary to break down certain fibers, starches, and sugars. Our gut flora keeps us healthy and enables us to ingest a wide range of foods we would otherwise be unable to digest. Similarly, the stonefly’s gut community enables it to benefit from seemingly nutritionless cryoconite sediments.

According to Takumi Murakami, from Japan’s National Institute of Genetics and principal author of the study, glacier stonefly nymphs and their gut bacteria likely drive the decomposition of organic materials on the glacier. The gut bacteria-invertebrate symbiosis may even be a common phenomenon in glacier ecosystems beyond Patagonia. Understanding the role of high trophic level invertebrates, like the stonefly, and their bacteria in glacier ecosystems is key to understanding the big picture of glacier nutritional networks.

Stonefly nymphs and cryoconite sediment in a meltwater pool (Source: Takumi Murakami).

 

Japanese scientists have compiled a significant body of research on invertebrates and their gut flora, particularly those inhabiting glaciers. In 1984, Japanese researcher Shiro Kohshima documented a novel discovery on a visit to the Yala Glacier in Nepal; a cold-tolerant midge. Later he visited Patagonia to examine the glacier-indigenous insects of the region. Kohshima enlisted collaborators, who in turn brought their students, which has resulted in the present day team of glacier-insect specialists, including Murakami. Their diligence in studying glacier ecosystems has produced a prolific body of published work, helping fill knowledge gaps at the headwaters of organic decomposition.

(Source: Nicolas Ferrier/Instagram)

 

Further underscoring the importance of the research, Murakami told GlacierHub, “Recent studies suggested that glacier ecosystems are the source of nutrition for downstream soil, river, and ocean ecosystems.” Were it not for the bacteria inhabiting the gut of the Patagonian Dragon, the organic matter would not be processed, and thus would not contribute to the glacier or downstream ecosystems.

Murakami adds, “Since glacier environments are susceptible to climate change, it is essential to accumulate the knowledge on the current glacier ecosystems for future studies, otherwise we will lose the opportunity.” Murakami’s concern is not unfounded. In the U.S., the stonefly is the poster child of understudied species that are quickly disappearing due to rapidly changing habitats. Petitions listing two species of stonefly under the Endangered Species Act are under consideration.

Roundup: Black Carbon, Dying Crustaceans, and Ice Sheet Melting

Kuwait Fires Cause Black Carbon Buildup

From Atmospheric Chemistry and Physics: “Muztagh Ata is located to the east of Pamir and in the north of the Tibetan Plateau. The ice core data provide important information for atmospheric circulation and climate change in Asia. Moreover, the climate in Muztagh Ata is very sensitive to solar warming mechanisms because it has a large snow cover in the region, resulting in important impacts on the hydrological cycle of the continent by enhancing glacier melt.”

Read more about black carbon in northern Tibet here.

Muztagh Ata Mountain, northern Tibetan Plateau (Source: Yunsheng Bai/Flickr)

 

Microscopic Crustaceans at Risk in Patagonian Fjords

From Progress in Oceanography: “Glacial retreat at high latitudes has increased significantly in recent decades associated with global warming. Along Chile’s Patagonian fjords, this has promoted increases in freshwater discharge, vertical stratification, and the input of organic and inorganic particles to fjords.”

Read more about the effects of glacial retreat on Patagonian crustaceans here.

Pia Fjord in Chile (Source: Glenn Seplak/Flickr).

 

Melting Greenland Ice Sheet Contributes to Sea Level Rise

From The Cryosphere: “Mass loss from the Greenland Ice Sheet (GrIS) has accelerated since the early 2000s, compared to the 1970s and 1980s, and could contribute 0.45–0.82m of sea level rise by the end of the 21st century. Recent mass loss has been attributed to both a negative surface mass balance and increased ice discharge from marine-terminating glaciers.”

Read more about the research here.

Massive ice island broken off from Petermann Glacier, one of the 18 glaciers observed in the study (Source: NASA Goddard Space Flight/Flickr).

 

GlacierHub News Report 06:21:18

GlacierHub News Report 06:21:18

The GlacierHub News Report is a bi-monthly video news report that features some of our website’s top stories. This week, GlacierHub News is featuring an assessment of the environmental impact of tourism in Tibet, deforestation on Mt. Kenya, cryoacoustics, and the adventures of a Filipino world traveler.

This week’s news report features:

 

Assessing the Environmental Impacts of Tourism in Tibet

By: Yang Zhang

Summary: In a paper published earlier this year in the Journal of Mountains, six researchers from the Tibetan Plateau provide science-based suggestions for policymakers to decide where and how ecotourism should be conducted. The construction of the Qinghai-Tibet Railway in 2006 gave people across the globe access to this cut-off region. By 2017, Tibet was the host of 25.61 million travelers worldwide, a 12-times growth compared to a decade ago. The exponential increase in tourism raises significant concerns about environmental degradation in this fragile ecological hotspot.

Read more about the research here.

Is Deforestation Driving Mt. Kenya’s Glacier Recession?

By: Jade Payne

Summary: Mount Kenya’s glaciers are rapidly receding. A new study published in the American Journal of Environmental Science and Engineering found that forest cover has the highest correlation with Mt. Kenya’s glacier coverage. The study found that the current trend in glacier thinning will continue until the glaciers completely disappear by 2100. In addition, the research found forest cover to be responsible for 75 percent of changes in glacier coverage during the study period, from 1984 to 2017.

Read more about Mt. Kenya’s glacier recession here.

Pioneer Study Sounds Out Iceberg Melting in Norway

By: Sabrina Ho

Summary: Last month, a team of researchers published their work on the intensity, directionality and temporal statistics of underwater noise produced when icebergs melt. The study is a pioneer in the field of cryoacoustics research still in its early stages since existing studies largely focus on larger forms of ice such as glaciers and ice shelves instead of icebergs.

Read more about the study here.

From the Philippines to Glacier Grey

By: Brian Poe Llamanzares

Summary: Rocco Puno, a Filipino world traveler, shared his story about traveling to Glacier Grey, a massive 1,200-year-old glacier that stretches 350 km long in the Chilean side of Patagonia.

Read the full story here.

Video Credits:

Presenters: Brian Poe Llamanzares & Jade Payne

Video Editor: Brian Poe Llamanzares

Writer: Brian Poe Llamanzares

News Intro: YouTube

Music: iMovie

Roundup: New Purple Bacteria, Chilean GLOFs, and Glacier Flow Rates

Emerging from Glacier Permafrost: New Purple Bacteria found in Tianshan

From International Journal of Systematic and Evolutionary Microbiology: “A Gram-stain-negative, motile and rod-shaped bacterium, designated strain B2T, which can synthesize purple pigments of violacein and dexyoviolacein, was isolated from Tianshan glacier in Xinjiang, China…. Based on genomic relatedness, physiological, biochemical and chemotaxonomic data, strain B2T […] is considered to represent a novel species.”

Find out more about the discovery here.

New bacteria discovered in melted glacier permafrost in the Tianshan Mountains in western China (Source: Wang et al.).

 

Understanding GLOF Dynamics in Arid Andes of Chile

From Natural Hazards: “We study a remarkable GLOF triggered by the failure of a subglacial lake in the Manflas Valley, Arid Andes of Chile, in 1985 providing insights into the lake’s origin, clarifying the failure mechanism and modeling the GLOF event-related dynamics… We show that the failed lake (4 × 106 m3) formed in a low-slope (≤ 10°) area and that extreme (≥ 90th percentile) annual precipitation before the GLOF contributed to the lake filling and probably to the dam collapse.”

Check out more about what scientists have learned from the 1985 GLOF event here.

Manflas Valley, where a 1985 outburst flood devastated the region and the setting of a recent study about understanding the event (Source: Ricardo Guler/Flickr).

 

Exploring the Factors Behind Flow Rates in Greenland’s Exit Glaciers

From Science: “The largest uncertainty in ice sheet models used to predict future sea-level rise originates from our limited understanding of processes at the ice-bed interface… We find that this sliding relation does not apply to the 140 Greenland glaciers that we analyzed.”

Read more about this groundbreaking study here.

An exit glacier in Greenland (Source: mharoldsewell/Flickr).

Photo Friday: From the Philippines to Grey Glacier

Long hikes, cold winds and raging rivers weren’t enough to keep Filipino world traveler Rocco Puno from reaching his destination, Grey Glacier, located in the southern Patagonian ice field.

Puno, the son of a prominent Filipino family, was recently accepted into Harvard’s MBA program and upon hearing the good news quit his job to travel the world. In search of adventure and inspiration for new sustainable development ideas, Puno and his friends flew to South America and took the W trek, Patagonia’s most famous hiking route. It gets its name from the three valleys it cuts through, creating a “w” shape on the map. The hike goes through Torres del Paine National Park, located on the western side of Chilé before reaching Grey Glacier.

Grey Glacier stretches around 350 kilometers and is over 1,200 years old. It took Puno and his friends five days of hiking to finally reach their destination. Puno told GlacierHub that this was one of the most physically demanding challenges of his life, and yet it was truly worth it. “One of the most rewarding parts of the hike was seeing Glacier Grey,” said Puno, who hails from a country without glaciers. “Set to the backdrop of towering snow-capped mountains, we agreed that it was one of the most beautiful things we had ever seen.”

Puno highly recommends the trip to anyone who is willing and able to make the journey, saying his experience was both humbling and inspiring. This Photo Friday, find photos of his glacier adventure.

Rocco Puno standing next to one of the rivers along the W Trek (Source: Rocco Puno).

 

Torres del Paine National Park, Chilé (Source: Rocco Puno).

 

Grey Glacier, Patagonia (Source: Rocco Puno).

 

Rocco Puno with his friends Manu Gonzalez, Quintin de Castro, Price Padgett, and Wilson Padgett on a boat next to Grey Glacier (Source: Rocco Puno).

 

The “W” Trek through Torres del Paine (Source: Rocco Puno).