Photo Friday: The Melting of Alaska’s Excelsior Glacier

Alaska’s Excelsior Glacier has been retreating since 1941, forming a lake named Big Johnston. The glacier’s melting rate has doubled since 1994, according to a blog post from the American Geophysical Union (AGU) website. The lake, in turn, has doubled in size in the past 24 years. With Big Johnston Lake now five times  the size of Central Park, Excelsior Glacier has completely separated into its eastern and western tributaries, according to a NASA article.

Mauri Pelto is the glaciologist at Nichols College who wrote the AGU post. “To see the amount of expansion and retreat in that amount of time is exceptional,” he told NASA.

According to Pelto, the high melting rate has been caused by warm temperatures and calving, the process by which ice at the edge of a glacier breaks off. This glacial breaking filled Big Johnston Lake with icebergs. But as Excelsior Glacier recedes farther away from the lake, icebergs are disappearing.

Since the glacier has retreated to a higher slope, it is no longer calving at a high rate. With this difference, the glacier “will still retreat, but it will slow down a lot—more on the order of tens of meters per year instead of hundreds,” Pelto told NASA.

Staff from the Johnstone Adventure Lodge, a local resort, captured images of the glacier that show its radical transformation from 2016 to 2019.

Excelsior Glacier and Big Johnston Lake, replete with icebergs, in 2016 (Source: Johnstone Adventure Lodge)
The glacier and lake in 2018 (Source: Johnstone Adventure Lodge)
A 2019 photo of the glacier separated into its eastern and western tributaries (Source: Johnston Adventure Lodge)
A shot of one of the tributaries, taken in 2018. (Source: Johnston Adventure Lodge)
The same tributary in 2019, a chunk of ice now separated (Source: Johnston Adventure Lodge)
Excelsior Glacier in June 2019 (Source: Johnston Adventure Lodge)

Read More on GlacierHub:

New Mountain Bike Trails Highlight Long Island’s Glacier Remnants

To Travel or Not to Travel

New Heights in the Himalayas: High-Altitude Weather Monitoring

Please follow, share and like us:
error

Geochemical Evolution of Meltwater from Glacier Snow to Proglacial Lake

Glaciers around the world are making headlines for their rapid retreat due to warming. Unlike some of these glaciers, however, dry valley glaciers, while accumulating only about 10 cm of snow annually, are neither retreating nor warming. Sarah Fortner, a geochemistry professor at Wittenberg University in Ohio, examined the meltwater of Canada Glacier, a dry valley glacier located in the Taylor Valley of Antarctica, and published a paper focused on two of its proglacial streams, Anderson Creek and Canada Stream.

Canada Glacier flowing into the Taylor Valley, Antarctica (Source: Anthony Powell).

Melting of glaciers develops an important part of a glacier’s anatomy known as “supraglacial streams,” which are conduits of water on top of glaciers. These supraglacial streams often become a source of water for “proglacial streams,” like the Anderson Creek and Canada Stream, narrow channels of rivers that issue from glaciers supply water to lakes located below the glaciers.

Fortner studied the meltwater of Canada Glacier during the 2001 to 2002 austral summer in the southern hemisphere (from November to March) and the contribution of the proglacial stream and glacial surface to water in Lake Hoare, which is located in front of Canada Glacier.

In her study, Fortner determines the crucial role of the wind in redistributing the geochemistry of the glacial surface as well as the two proglacial streams. By looking at the geochemistry of the two proglacial streams and the role of the wind in bringing valley sediments to the supraglacial and ultimately proglacial streams, Fortner found that the glaciers that contributed to the proglacial lakes are not dilute like glacier snow.

Large pond formed from supraglacial melt on the surface of Canada Glacier. (Source: Fortner)

Contrary to expectations, the chemistry between the two streams was quite different. “While they are roughly five miles apart, they were very different,” she told GlacierHub. “Located on the east side of the glacier, Canada Stream was teaming with life, with multiple mosses, lichen, algae, and invertebrates. If you were to press your hand into these, it would feel like a sponge. On the west side of the glacier, Anderson Creek looks barren in comparison. There is life in the stream, but not as abundant or diverse as the Canada Stream.”

In an attempt to find the source of the difference, Fortner and a team of scientists sampled water from supraglacial channels with high discharge for chemical analysis. Through this analysis, Fortner aimed to map the evolution of the chemicals in the meltwater at Canada Glacier from unmelted glacier snow to supraglacial streams to proglacial streams and finally to Lake Hoare located in front of the glacier.

Taylor Valley and Lake Hoare (Source: 77DegreesSouth).

With the chemical mass balance analysis of the samples from the glacier, Fortner first wanted to see whether the chemical composition of the supraglacial stream would be diluted like the unmelted glacier snow, their primary precipitation. According to Fortner, unmelted glacier snow would naturally be very dilute, with a low concentration of any chemical solute, and we would expect the same level of chemical concentration from the supraglacial streams, located on top of the glacier body itself and created as a result of glacier snow melting. However, she found that supraglacial streams were rich in major ions like calcium, sodium, and sulfate. 

“This begins to highlight the importance of wind-blown sediment as control of water chemistry in these Antarctic ecosystems,” Fortner said.

In her paper, she explains that the strong west to east Föhn wind (Foehn wind), a parcel of dry and warm air moving down the lee (downwind side) of the mountain, brought sediments from the floor of Taylor Valley, abundant with carbonate ( CO3(2-)) and gypsum (CaH4O6S) minerals, which are the sources of the high calcium (Ca2+) and sulfate ion (SO2-4) found in the supraglacial streams. In short, the wind delivered sediment that influenced the chemistry of the streams on the surface of the glacier.

Diagram of Föhn wind (Source: ipfs).

“Both sides of the valley floor contributed to the sediment received on the glacier surface which explained major chemical differences found in supraglacial and proglacial streams versus the original unmelted snow. It is also clear that the Föhn wind coming off of the ice sheet had the greatest influence on depositing chemistry,” Fortner explained.

Furthermore, the west to the east direction of the wind causes a difference in chemical composition between the proglacial streams in the western and eastern sides of Canada Glacier, preferentially depositing more sulfate in the western proglacial streams (Anderson Creek) than in the eastern proglacial streams (Canada Stream).

“As a result of the west to east wind, supraglacial streams flowing into Anderson Creek have much higher concentrations of both calcium and sulfate than supraglacial streams flowing into Canada Stream,” Fortner explained.

Map of the Ross Sea. Lake Hoare is located within the Taylor Valley, showing its proximity to Ross Sea. (Sources: USGSantarctic.eu).

The chemical deliveries from the stream channel to the proglacial lake is crucial to examine, as Anderson Creek contributes over 40 percent of the water to Lake Hoare, the final recipient of the meltwater from Canada Glacier, during the low-melt season. However, Fortner said it is just as important to examine the chemical deliveries from the glacial surface (direct runoff).

“While one would think streams would deliver far more chemistry, as glaciers and their direct runoff are typically dilute, glacier surface can be just as important source of chemistry because of the low accumulation and wind delivered sediment,” she added.

Dry valley glaciers are unique in that the glacier surface is an important contributor of chemistry to downstream ecosystems. Unlike many other glaciers, it isn’t just about chemistry from stream channels, but also about glacier surfaces. If more melt continues in response to the wind, this could result in potential changes in the chemical delivery into Lake Hoare. Furthermore, such changes can extend to the continental outline of Antarctica into Ross Sea, the southern extension of the Pacific Ocean.

 

Please follow, share and like us:
error