Photo Friday: These Glacier-Covered Volcanoes in Chile Could Soon Erupt

Stretching over 7,000 kilometers across seven countries, the Andes are the world’s longest mountain range. They make up the southeastern portion of the Ring of Fire and are well-known for their abundant volcanoes.

The Chilean Andes are home to 90 active volcanoes, all monitored by the Chilean National Geology and Mining Service (Sernageomin). The agency categorizes volcanic activity using four distinct alert levels: green (normal level of activity), yellow (increased level of activity), orange (probable development of an eruption in the short-term), and red (eruption is ongoing or imminent). Increased volcanic activity is associated with frequent earthquakes; plumes of gas, rocks, or ash; and lava flows.

Two areas monitored by Sernageomin are currently showing signs of increased activity: the Nevados de Chillán and Planchón-Peteroa volcanic complexes. The agency issued orange and yellow alert levels for them, respectively.

A satellite image of the Nevados de Chillán volcano complex, showing the glacier-covered volcano peaks (Source: Sernageomin).

Nevados de Chillán Volcanoes: Orange Alert

The Nevados de Chillán volcano complex is comprised of several glacier-covered volcanic peaks. When these volcanoes erupt, the glacial ice sitting atop them melts and mixes with lava, which can result in dangerous lahars, or mudflows. Several small earthquakes and the formation of new gas vents led Sernageomin to issue a yellow alert on December 31, 2015. (To view a detailed map of the Nevados de Chillán complex, click here.)

On April 5, 2018, Sernageomin upgraded the Nevados de Chillán’s yellow alert to an orange alert, following thousands of tremors and a thick, white column of smoke rising from the area. This signaled the likelihood of an eruption in the near future.

Sernageomin’s most recent volcanic activity report for Nevados de Chillán, issued on February 11, 2019, cited persistent seismic activity, which is directly related to increased frequency of explosions, along with the growth and/or destruction of the lava dome that lies in the crater. The expected eruption is most likely to have moderate to low explosive power, but sporadic observations over the last year have shown higher than average energy levels.

On February 15, 2019, the Volcanic Ash Advisory Center in Buenos Aires documented a volcanic-ash plume reaching 3,700 meters high at Nevados de Chillán, an example of the above mentioned “higher than average energy levels.”

Read more on GlacierHub:

Eruption in Glacier-covered Volcano in Chile

A Glacier-covered Volcano in Chile: Will It Erupt Soon?

Photo Friday: Code Yellow at Mount Veniaminof

Images Show Active, Glacier-Covered Volcanoes in the Russian Far East 

Please follow, share and like us:
error

Roundup: Iceland Eruption, Black Flies and Black Carbon

Insights into Bárðarbunga Volcano from the Holuhraun Rifting Event

From Advancing Earth and Space Science: “The two weeklong rifting event at Bárðarbunga volcano in 2014 led to the Holuhraun eruption, which produced 1.5 km3 of lava and was the largest in Iceland in over 200 years. Predicting when and where an intrusion will lead to eruption requires detailed knowledge of the underlying stress field… Modeling of the 2014 Bárðarbunga rifting event therefore not only yields insights into the event but also provides a window into undetected volcanic activity in the past.”

Find out more about the geology behind one of the biggest eruptions on a glacier-covered volcano here.

Holuhraun eruption
Holuhraun eruption (Source: Iceland/Pinterest).

 

Distribution of Black Flies in the Andes During El Niño

From ScienceDirect: “Vector ecology is a key factor in understanding the transmission of disease agents, with each species having an optimal range of environmental requirements. Scarce data, however, are available for how interactions of local and broad-scale climate phenomena, such as seasonality and the El Niño Southern Oscillation (ENSO), affect simuliids (Black Flies). We, therefore, conducted an exploratory study to examine distribution patterns of species of Simuliidae along an elevational gradient of the Otún River in the Colombian Andes, encompassing four ecoregions. Species richness and occurrence in each ecoregion were influenced by elevation, seasonality, and primarily the warm El Niño and cool La Niña phases of the ENSO. The degree of change differed among ecoregions and was related to physicochemical factors, mainly with stream discharge.”

Read more about the distribution of black flies based on the climatology of the Andes Mountains here.

Black Fly
Simuliids/Black Flies (Source: Kallerna/M.I.I.A).

 

Glacier Retreat of the Tian Shan and Impact on Urban Growth

From IOP Earth and Environmental Science: “The retreat of mountain glaciers, notably in high Asia, provides evidence for the rise of global temperature. Analyses of satellite remote sensing data combined with the ground observations reveal a 37.5% decline of glaciered area from 1989 to 2014 in No.1 Glacier, the headwaters of the Urumqi River basin, Chinese Tian Shan, which could be linked to increased summer melting. We suggest that the decline of glacier area is driven primarily by summer melting and, possibly, linked to the combined effects of the global rise in temperatures and black carbon/CO2 emission from coal-fired power plants, cement plants and petroleum chemical plants from the nearby Urumqi regions.”

Discover more about the glacier melting in Tian Shan Mountains and its impacts here.

Number One Glacier in the mountains outside Urumqi, Xinjiang, China (Source: Remko Tanis/Flickr).
Please follow, share and like us:
error