Roundup: Accelerating Sea Level Rise, France’s Mer de Glace, and Andean Glacier Change

World Meteorological Organization says sea level rise accelerating, fed by land ice melting

From the World Meteorological Organization: “The amount of ice lost annually from the Antarctic ice sheet increased at least six-fold, from 40 Gt per year in 1979-1990 to 252 Gt per year in 2009-2017.

The Greenland ice sheet has witnessed a considerable acceleration in ice loss since the turn of the millennium.

For 2015-2018, the World Glacier Monitoring Service (WGMS) reference glaciers indicates an average specific mass change of −908 mm water equivalent per year, higher than in all other five-year periods since 1950.”

Read the WMO report here and BBC’s coverage here.

The World Meteorological Organization is the United Nations System’s authoritative voice on weather, climate, and water. (Source: WMO)

The “dramatically changing landscape” of Mer de Glace

From New Scientist: “About a century ago, women with boaters and parasols sat near the Montenvers train station above the glacier, which then was almost level with a tongue of jagged ice snaking into the distance. Today, visitors are greeted by a slightly sad and largely grey glacier that is about 100 metres lower.”

Read more here.

A view of Mer de Glace in France (Source: chisloup/Wikimedia Commons)

An interdisciplinary analysis of changes in the high Andes

From Regional Environmental Change: “The high tropical Andes are rapidly changing due to climate change, leading to strong biotic community, ecosystem, and landscape transformations. While a wealth of glacier, water resource, and ecosystem-related research exists, an integrated perspective on the drivers and processes of glacier, landscape, and biota dynamics is currently missing. Here, we address this gap by presenting an interdisciplinary review that analyzes past, current, and potential future evidence on climate and glacier driven changes in landscape, ecosystem and biota at different spatial scales.

[… ]

Our analysis indicates major twenty-first century landscape transformations with important socioecological implications which can be grouped into (i) formation of new lakes and drying of existing lakes as glaciers recede, (ii) alteration of hydrological dynamics in glacier-fed streams and high Andean wetlands, resulting in community composition changes, (iii) upward shifts of species and formation of new communities in deglaciated forefronts,(iv) potential loss of wetland ecosystems, and (v) eventual loss of alpine biota.”

Read the study here.

Tyndall Glacier, located in the Torres del Paine National Park in Chile, is featured in this image photographed by an Expedition 16 crew member on the International Space Station. (Source: NASA)

Read more on GlacierHub:

Photo Friday: Countdown to the Release of the IPCC’s Special Report on the Ocean and Cryosphere

New Research Reveals How Megafloods Shaped Greenland And Iceland

Observing Flora Near a Famous Norwegian Glacier

Please follow, share and like us:
error

Leave a Reply