Round Up: Ice Thickness, Volcano Impacts on Glaciers, and Biodiversity in Antartica

A consensus estimate for the ice thickness distribution of all glaciers on Earth

From Nature Geoscience: “Projections of future glacier change, estimates of the available freshwater resources or assessments of potential sea-level rise all need glacier ice thickness to be accurately constrained. Previous estimates of global glacier volumes are mostly based on scaling relations between glacier area and volume, and only one study provides global-scale information on the ice thickness distribution of individual glaciers. Here we use an ensemble of up to five models to provide a consensus estimate for the ice thickness distribution of all the about 215,000 glaciers outside the Greenland and Antarctic ice sheets.”

Accurate estimates of ice mass and melt rate in the Himalayas will help surrounding communities anticipate the impacts of climate change. (Source: Pixabay)

A risk assessment of the area surrounding the Popocatépetl volcano

From Geofísica Internacional: “In the areas of highest risk, 20 towns in Puebla State, 8 in México State, and 2 in Morelos State were evacuated; in areas of intermediate risk, also were evacuated 5 towns in México State, 1 in Puebla State, and 2 in Morelos State. In addition, the San Buenaventura Nealtican community in Puebla was evacuated, because it was in the lahar flow path along the Huiloac ravine, which originates on the north side of the volcanic cone, at the glacier which potentially could be eroded and melted by pyroclastic flows. “

The Popocatépetl volcano is located in central Mexico. (Source: Mirella/Flickr)

Degradation of macroalgal detritus in shallow coastal Antarctic sediments

From Limnology and Oceanography: “The western Antarctic Peninsula is one of the fastest warming areas on Earth (Ducklow et al. 2007). As a result, its glaciers are melting and retreating at unprecedented rates (Rückamp et al. 2011; Cook et al. 2016). The retreat of glaciers opens up new habitat for marine benthic organisms (e.g., Lagger et al. 2018), such as sublittoral rocky substrates that are increasingly colonized by macroalgae (Quartino et al. 2013; Mystikou et al. 2014; Campana et al. 2018). Macroalgal communities play an important role in the Antarctic coastal ecosystem. They dominate shallow benthic communities on hard substrates along the western Antarctic Peninsula, often covering > 80% of the bottom, with standing biomass levels comparable to temperate kelp forests (Wiencke and Amsler 2012). A global average of 82% of the local primary production from kelp is estimated to enter the detrital food web where it can be exported to adjacent communities (Krumhansl and Scheibling 2012).”

An image of red seaweed, one of the species threatening Antarctica’s biodiversity (Source: Peter Southwood, Creative Commons)

Read More on GlacierHub:

The Dead of Mount Everest Are Seeing the Light of Day

Glaciers Account for More Sea Level Rise Than Previously Thought

Glaciers Get New Protections with Passage of Natural Resources Act

Leave a Reply