Debris-Covered Glaciers Advance in Remote Kamchatka

The remote and mountainous Kamchatka Peninsula in eastern Russia is home to over 600 glaciers and 30 active volcanos. Like most glaciers around the world, the glaciers of Kamchatka have been in retreat due to climate change. However, not all of the glaciers in Kamchatka are retreating; some have remained stable, while others have even advanced. One region, the northern Kluchevskoy Volcanic Group (NKVG) in central Kamchatka, where glaciers have advanced, was the focus of a recent study in Geosciences, which examined this anomaly and the overall behavior of the area’s glaciers.

The NKVG, is home to multiple active volcanos. Two, the Klyuchevskoy and the Bezymianny, have erupted over 90 and 20 times, respectively, since 1800. The NKVG is also home to 15 named glaciers. On the whole, the total glacial area across the peninsula shrank by 11 percent from the 1950s to 2000. This shrinking trend was even more pronounced recently with total glacier area decreasing 24 percent from 2000 to 2014. Nonetheless, several of the glaciers in the NKVG were found to have advanced despite rising temperatures.

Photo of the NKVG from space
The NKVG from the International Space Station. In the center of the image are the Klyuchevskoy and Bezymiann volcanos (Source: NASA Earth Observatory/Creative Commons).

This finding served as the motivation for the study, which aimed to examine these advancing glaciers in greater detail, according to lead author Iestyn Barr, who spoke to GlacierHub about the research. In the past, monitoring of the glaciers in the NKVG had been hindered by extensive glacial debris cover, the logistical challenges of conducting fieldwork in remote Kamchatka, and the lack of cloud-free satellite images due to the peninsula’s climate.

To surmount these challenges, the researchers utilized ArticDEM, a free, high-resolution elevation satellite dataset for the Arctic developed through an initiative by the National Geospatial Intelligence Agency and National Science Foundation. The dataset recently became available for Kamchatka.

The ArticDEM data allowed the researchers to map and monitor glacial variations in a way that had not been possible before. For example, debris cover previously made it difficult to distinguish the margins of a glacier, but with ArticDEM the researchers were able to delineate glacial margins by identifying breaks in the glaciers’ slope. In addition, the data covered multiple years, allowing the researchers to monitor changes over time. The primary drawback of the data, according to Barr, is that there are gaps: not all glaciers are covered entirely for multiple time-periods, and the time-periods are not always the same for each glacier.

Map of Kamchatka Peninsula and the NKVG.
On the left, a map of the Kamchatka Peninsula with its glaciers and volcanos. On the right, a Landsat image of the NKVG glaciers and active volcanos (Source: Barr et al.)

Overall, the study’s analysis between 2012 to 2016 revealed that glaciers in the NKVG cover an area of over 182 km2, with most glaciers originating from a central icefield near two of the area’s volcanos and extending up to 20 km in length. Debris-covered glaciers make up 65 percent of all glacial area.

Of these glaciers, three glaciers in the NKVG were found to have advanced over the observed time period with the Shmidta glacier experiencing the biggest advance of 120 m between July 2012 to April 2014 and a further 60 m advance by October 2015. The other two glaciers, the Bogdaovich and Erman, advanced too, with the Bogdaovich advancing 40 m between April 2013 and October 2015 and Erman advancing 30 m between September 2013 and February 2016.

The researchers also examined changes to the surface elevations of glaciers in the NKVG, finding that most changes were the result of the deposition of volcanic material. A 2013 eruption of the Klyuchevskoy volcano deposited debris on parts of the Bogdanovich Glacier, causing a 13 m increase in surface elevation. On the other hand, other areas of the Bogdanovich, as well as other glaciers in the NKVG, experienced decreases in surface elevation likely as a result of increased ice melt caused by hot volcanic debris.

ArticDEM image of the Shmidta Glacier advancing.
The advance of Shmidta Glacier between July 2012, April 2014, and October 2015, as observed in the ArcticDEM (Source: Barr et al.)

In the end, the researchers determined a connection between the anomalous advancing glaciers and the increased glacier surface elevations. Volcanic debris, which are deposited on glaciers in the aftermath of an eruption, increase elevation and insulate the glacier by absorbing solar radiation. This allows the glacier to remain stable or advance.

All three of the glaciers in the NKVG that advanced also had debris cover, the authors note. The Shmidta Glacier was covered during an eruptive period for the Klyuchevskoy volcano from 2005 to 2010, while the Bogdanovich and Eram glaciers were covered in the 1940s and 1950s, respectively.

Finally, the researchers assessed the velocity of the glaciers in the NKVG, finding that they ranged from 5 to 140 m a year. The highest velocities were found near the central sections of the largest glaciers close to the top of the Ushovky caldera (a large volcanic crater), with velocity decreasing further down the glaciers. On the whole, 21 percent of the glacial area in the NKVG was classified as low-activity or simply showing no evidence of flow, with the remaining area classified as active. These sections of the glaciers were, for the most part, in the ablation (melting) zone at the lower end of the glacier.

Photo of the Klyuchevskoy volcano erupting.
The Klyuchevskoy volcano erupting (Source: RussiaTrek/Twitter).

Analyzing the state of glaciers in the isolated Kamchatka Peninsula has long been a challenge. Fortunately, the recent availability of ArticDEM data aided the researchers in examining the changing glaciers of the NKVG in a novel way. In the future, the researchers hope to further employ ArticDEM data to analyze more of the Kamchatka glaciers and to map the glacial geomorphology of the greater region, including Eastern Siberia, to determine the extent of glaciers in the past, according to Barr.

Leave a Reply