These little pools are called cryoconite holes, pockets in the surface of glaciers that are usually ovular or circular. Cryoconite holes can be quite small and shallow, or as wide as a meter and up to half as deep. “People first notice cryoconites because they look so odd, like honeycomb. The textures are visually striking,” says Roth. She added that they constitute such an extreme environment that scientists look to them to understand the evolution of simple life forms on Mars and other planetary bodies. A recent paper in Limnology by Krzysztof Zawierucha et al. analyzed cryoconite communities on the margin of the Greenland Ice Sheet and found that the distribution of microfauna at the edge of the sheet is random, without clear ecological determinants like water chemistry or nutrient availability.
Zawierucha conducted his fieldwork at the beginning of polar autumn and was struck by the changing colors of the tundra, the musk oxen and the impressiveness of the ice sheet, which together created a landscape that felt right out of a fairy tale. As he trekked through wind and rain to collect samples from cryoconite holes, puddles and lakes, he often felt as if he was in a science fiction movie about “icy worlds in other galaxies.”
The flushing process, and the way it affects the animals which it displaces, raises many questions for Zawierucha. How much wind or rain is required to remove the animals from the cryoconites? “How many of them are flushed to downstream ecosystems, and how many stay in the weathering crust on glaciers?” he wonders. And what happens once the animals are out of their holes? Zawierucha harbors what he calls a “small dream,” to find active animals in the subglacial zone (the hydraulic systems under a glacier). “If they are flushed to the icy wells, are they able to survive under ice?” he asks.
Tardigrades, some species of which are black in color, may have an even bigger effect on glacial dynamics and global climate. Tiny though they are, populations of black tardigrades in cryoconite holes, which Zawierucha has found on alpine glaciers, can reduce albedo and increase melting of the glacier surface. This may constitute a positive feedback loop that hastens glacial melting, but more studies are required to prove this, Zawierucha says.
One positive feedback loop is clear. Higher temperatures increase the melting of glacier surfaces and spur microbial activity, which in turn speeds up the process of melting, according to Zawierucha. As the Greenland Ice Sheet continues to melt, the animals that call it home will be disturbed, though it is difficult to anticipate the end result. How tardigrades, especially species unique to glacial habitats, will respond to higher flushing rates and removal from glaciers is of particular interest. Perhaps the tardigrades will adapt, or perhaps they will go extinct, says Zawierucha.
Now is the time for such interdisciplinary research: more studies of animals living on the Greenland Ice Sheet will help scientists understand how this important freshwater reservoir, and Earth’s climate, will respond to global warming.