Posts Tagged "Svalbard"

Glaciers Act as Pollutant Transporters in the Arctic

Posted by on Dec 15, 2016 in All Posts, Featured Posts, Science | 0 comments

Glaciers Act as Pollutant Transporters in the Arctic

Spread the News:ShareWhen people think of the Arctic, they often think of polar bears on melting sea ice, not of an area contaminated by pollutants. However, according to an article by Maria Papale et al. in the Marine Pollution Bulletin, findings of polychlorinated biphenyls (PCBs) in the Arctic demonstrate that ice can be a major transporter of pollutants in this remote region. The research team examined the concentration of PCBs in a fjord called Kongfjorden, located in Svalbard in Arctic Norway (79° N, 12° E), in order to understand how the Arctic is affected by pollutants. Given the impact these chemicals can have on human and animal health, the increase in ice melt due to climate change will have serious consequences for the release of these toxins. PCBs are an important type of persistent organic pollutants (POPs); as such, they have a long lifetime in the environment, although they can be broken down by sunlight or some microorganisms. They are compounds once used heavily in the production of refrigerator coolants, electrical insulators and other items from 1929 until the late 1970s, when they were banned in the United States and elsewhere due to health concerns, particularly their carcinogenic effects. The presence of PCBs in Svalbard in the Arctic Basin indicates some form of long-distance transport because the Arctic is thousands of miles from industrial centers where PCBs are produced. Pollutants like PCBs are transported from regions in the northern mid-latitudes into the Arctic by the prevailing winds and ocean currents. As Papale et al. explain, the PCBs deposited from the atmosphere accumulate on the snow and ice. This deposition has a drastic effect on the region, because PCBs that get trapped in the ice are ultimately released into the environment once the ice melts. For this reason, decades-old PCBs can enter rivers and oceans now, as glaciers melt; they are also emitted when PCB-containing materials wear out through use or when they are burned. In the Arctic, concentrations of PCBs are on average 0.2 ng/m3. Those concentrations have increased since the 1980s, after the banning of PCBs in the United States. Once introduced into the food web, the fate of PCBs depends on which bacteria is present in the environment, since bacteria, such as Actinobacteria and Gammaproteobacteria, possess genetic and biochemical capacities for breaking down PCB pollution. Papale et al. gathered data on the occurrence of cold-adapted, PCB-oxidizing bacteria in seawater and sediment along Kongsfjord, a fjord located on the west coast of Spitsbergen, an island in the Svalbard archipelago. The fjord is fed by two glaciers, Kronebreen and Kongsvegen. The outer fjord is influenced by oceanographic conditions, while the inner fjord is influenced by large tidewater glaciers. Higher concentrations of PCBs were observed in the water right next to the glacier (due to high flows of sediment and sea currents) or next to the open sea (likely due to water circulation inside the fjord). The higher concentrations of PCBs next to the glacier indicate the influence of glacial meltwater containing PCBs. Once the PCBs arrive in Svalbard Archipelago by long-range transport, they build up in the glaciers on Kongfjorden, sometimes by attaching to fine-grained particles, which are then incorporated into the ice. When the ice melts in the summer, the glacier meltwater containing PCBs flows into the fjord and could also freeze into sea ice in the winter. Sea ice transported from other regions also brings POPs to the region. For example, Arctic Ocean sea ice that forms near Siberia can contain pollutant-laden sediments; it is carried to Svalbard by currents, receiving depositions from the atmosphere as it travels. It can also contain heavy metals like lead,...

Read More

Oxonians Retrace Paths Through Spitsbergen 93 Years Later

Posted by on Nov 1, 2016 in All Posts, Featured Posts, Interviews, Science, Sports | 0 comments

Oxonians Retrace Paths Through Spitsbergen 93 Years Later

Spread the News:ShareDuring summer, a team of four students from Oxford University, led by undergraduate James Lam, completed a 184-mile expedition across the Ny-Friesland ice cap in Spitsbergen, Norway. Accompanied by a guide, Endre Før Gjermundsen, they skied across the ice cap from July 31 to August 29, retracing the route of a similar expedition conducted by four Oxford University undergraduates in 1923, and collecting scientific data about glaciers along the way. Spitsbergen is the largest island in the Svalbard archipelago, a territory located within the Arctic circle. Svalbard has more than 2,100 glaciers, constituting 60 percent of its land area, many of which are found on Spitsbergen. The island is also home to many mountains and fjords, giving rise to its name, which means ‘pointed mountains’ in Dutch. Ny-Friesland in east Spitsbergen has received limited attention from scientists, with little data having been recorded since the 1923 expedition. As such, the team of undergraduates worked with researchers from Oxford University and the University Centre in Svalbard (UNIS) to collect different forms of data on the island’s environment, glaciers and climate. The expedition was inspired by the discovery of original maps and photos from the 1923 expedition in the archives of the Oxford University Exploration Club. All of the team members, James Lam, Jamie Gardiner, Will Hartz and Liam Garrison, have personal skiing and mountaineering experience spanning three different continents. Nevertheless, they undertook nine months of rigorous training and extensive preparations to ensure the success of both the scientific and physically strenuous aspects of the expedition. During the trip, the students photographed, recorded and collected DNA samples from vascular plants encountered at ten different locations between Duym point in the east and the terminus of Nordernskiold glacier in the west. These samples are currently being analyzed at UNIS and will be added to the Svalbard Flora database. They will provide valuable contributions to understandings of dispersal patterns on glaciers, particularly as there is only one other set of biological data for East Spitsbergen. Using a drone, the students successfully mapped three sections of the Chydeniusbreen glacier. This will be used to create 3D maps of these areas, which will be compared to satellite data and the Norwegian Polar Institute’s models of the glacier to measure glacial change. The team was also able to successfully repeat 25 of the landscape photographs taken on the 1923 expedition. These will be used to practice photogrammetry, the science of measurements done using photographs, to be used in conjunction with the 3-D maps and satellite data to track glacial change in Ny-Friesland. One of the aims of the 1923 expedition was to summit hitherto unclimbed peaks. In the same vein, the 2016 team summitted 8 different peaks, including a number of mountains climbed by the original expedition, such as Poincarétoppen, Mount Chernishev and Mount Irvine. The students also made the first ever ascent of the West Ridge of Newtontoppen, Svalbard’s highest mountain (5,666 ft). These efforts were carried out alongside the scientific aims of the expedition, with the team remaining camped in the base camp of Loven Plateau for a week in order to pursue repeat photography and data collection. GlacierHub caught up with two of the team members for a short interview about the expedition and what the team intends to do now that they have returned. GlacierHub: What happens now that the expedition is over? James Lam, team leader: Now that the expedition is over, I am working to process the data that we collected. I’m collaborating with the Earth Sciences Department in Oxford as well as UNIS and the Norwegian Polar Institute....

Read More

Glaciers Serve as Radioactive Storage, Study Finds

Posted by on Aug 17, 2016 in Adaptation, All Posts, Featured Posts, Science | 0 comments

Glaciers Serve as Radioactive Storage, Study Finds

Spread the News:ShareThe icy surfaces of glaciers are punctured with cryoconites – small, cylindrical holes filled with meltwater, with thin films of mineral and organic dust, microorganisms, and other particles at the bottom of the hole. New research conducted by Polish scientists reveals that cryoconites also contain a thin film of extremely radioactive material. The study confirms previous findings of high levels of radioactivity in the Arctic and warns that as Arctic glaciers rapidly melt, the radioactivity stored in them will be released into downstream water sources and ecosystems. The study, headed by Edyta Łokas of the Institute of Nuclear Physics at the Polish Academy of Sciences and researchers from three other Polish universities, was published in Science Direct in June. The study examines Hans Glacier in Spitsbergen, the largest and only permanently populated island of the glacier-covered Svalbard archipelago, off the northern Norwegian coast in the Arctic Ocean. While investigating the radionuclide and heavy metal contents of glacial cryoconites, the researchers revealed that the dust retains heavy amounts of airborne radioactive material and heavy metals on glacial surfaces. This radioactive material comes from both natural and anthropogenic, or human-caused, sources, according to the study. However, the researchers determined through isotope testing that this deposition was mainly linked to human activity. Head researcher Edyta Lokas says she believes that this radioactive material mainly derives from nuclear weapons usage and testing. “The radionuclide ratio signatures point to the global fallout [from nuclear weapon testing], as the main source of radioactive contamination on Svalbard. However, some regional contribution, probably from the Soviet tests performed on Novaya Zemlya was also found,” Lokas wrote in an email to GlacierHub. The Arctic region bears an unfortunate history of radioactive contamination, from an atom bomb going missing at the U.S. base in Thule, Greenland, to radiation from Chernobyl getting picked up by lichens in Scandinavia, making reindeer milk dangerous. But how does all this radioactive materials end up in the Arctic? The Arctic, and polar regions in general, often become contaminated through long-range global transport. In this process, airborne radioactive particles travel through the atmosphere before eventually settling down on a ground surface. While these particles can accumulate in very small, non harmful amounts in soils, vegetation, and animals in all areas of the world, geochemical and atmospheric processes carry the majority of radioactive particles to the Poles. Once the particles reach the Poles, “sticky” organic substances excreted by microorganisms living in cryoconites attract and accumulate high levels of radioactivity and other toxic metals. As cryoconites occupy small, but deep holes, on glacier surfaces, they are often left untouched for decades, Edyta explains. Cryoconites also accumulate radioactive substances that are transported with meltwater flowing down the glacier during  summertime. Climate change lends extra meaning to the study, as the researchers note that, “the number of additional contamination sources may rise in future due to global climate changes.” They expect that both air temperature increases and changes to atmospheric circulation patterns and precipitation intensity will all quicken the pace of contamination transport and extraction from the atmosphere. Edtya explained that as Arctic glaciers retreat, “The radioactivity contained in the cryoconites is released from shrinking glaciers and incorporated into the Arctic ecosystem.” She said she hopes that future climate change vulnerability assessments of the Arctic to pollution consider cryoconite radioactivity. Spread the...

Read More

Ice loss surpasses poaching as largest threat to Barents Sea polar bear

Posted by on Aug 10, 2016 in All Posts, Featured Posts, Science | 0 comments

Ice loss surpasses poaching as largest threat to Barents Sea polar bear

Spread the News:SharePrior to the 1970s, hunting decimated polar bear populations across the Arctic. The international community has made strides in protecting the iconic species from over-harvesting through conservation agreements, which have helped the species start to recover. However, a review paper published in Polar Research in July suggests that the road to recovery is far from over, as ice loss now replaces poaching as the most pressing threat to polar bear survival in the Barents Sea area, north of Norway and Russia. The paper, written by Magnus Anderson and Jon Aars, of the Norwegian Polar Institute, comprehensively covers the history of polar bear population changes over the course of 100 years. By examining historical documents and current scientific studies, the authors find that ice loss, in conjunction with human encroachment on habitat and pollution, have replaced hunting as the largest threat to polar bear populations in the Barents Sea area. Somewhere between 100 and 900 polar bears were poached each year between 1870 to 1970 in Greenland and the Barents Sea region. Arctic countries then came together to protect the species as the bears were pushed toward the brink of extinction. In 1973, the Agreement on the Conservation of Polar Bears was facilitated by the International Union for Conservation of Nature and signed by five countries, marking an important step in the conservation of the polar bear and Arctic ecosystem. With the additional support of Russia’s and Norway’s polar bear hunting bans, enacted in 1956 and 1973, respectively, the Barents Sea polar bear’s outlook became more promising. In Svalbard, a glacier-rich archipelago north of the Norwegian mainland, polar bear populations doubled in the decade following the conservation agreement. There were approximately 2,000 bears in the region as of 1980. While population recovery occurred, it happened slower than anticipated by the scientific community. The Intergovernmental Panel on Climate Change mentioned the impacts of climate change on sea-ice cover for the first time in its third assessment in 2001. The inclusion of ice loss in the report shed light on a potential new threat to polar bear populations, which depend on the Arctic ice for their way of life. It also offered an explanation for the slow recovery of the species following the Russian and Norwegian poaching bans. According to current assessments, the polar bear habitat in the Barents Sea will substantially decrease over the next few decades due to ice loss and glacier retreat, as a consequence of anthropogenic climate change. Polar bear populations are expected to decline accordingly. The Polar Research study states that the main reason for the loss of polar bear populations will be the loss of an ice “platform” needed to hunt for prey — ringed, bearded, and harp seals. As the ice melts, polar bears lose their hunting grounds and must travel greater distances under more treacherous conditions in order to find food. Anderson and Aars cite prior studies conducted by Carla Freitas, Ian Stirling, and others which have tracked trends in polar bear movement with GPS collars and have found that the thickness and persistence of ice significantly affects the location of polar bears and their hunting grounds. In addition to impacting the species’ hunting ability, ice is critical for breeding, traveling, and denning. A loss of  habitat means fewer travel routes for males to find females during the breeding season and a drop in breeding rates across the Arctic. According to the authors’ research, when females have to give birth and raise their cubs, they are hard-pressed to find suitable denning and birthing areas. In the fall, the ice and snow begins...

Read More

Polar Ecology in Flux Due to Climate Change

Posted by on Jul 20, 2016 in All Posts, Featured Posts, Science | 0 comments

Polar Ecology in Flux Due to Climate Change

Spread the News:ShareGlacial melting and rising ocean temperatures are affecting the feeding, breeding and dispersion patterns of species, such as krill, cod, seals and  polar bears, in the polar regions, according to two recently published research articles. This climatic shift could create an imbalance in the regional ecology and negatively impact numerous species as the effects of climate change worsen. The first article reflects on how a threat to a key species in Antarctica may shake up the food chain, while the other considers how a changing habitat in the Arctic could skew the population trends of several interconnected species and create a systemic imbalance in the ecosystem. After a nine-year study of krill in Potters Cove, a small section of King George Island off the coast of Antarctica, a team of South American and European marine biologists published their research this past June in the scientific journal Nature. Krill are shrimp-like sea creatures that feed mostly on plankton.  Since they extract their food from the water by filtering it through fine combs, they are known as filter feeders.  Krill are found in all oceans and are an abundant food source for many marine organisms.  In the polar regions, predators such as whales often rely on krill as their only consistent food source. The authors of this first piece found that a destruction of the krill population could extend undermine the Antarctic food web that relies on the presence of the small creatures.  The study launched after stacks of dead krill washed ashore at Potters Cove in 2002, lining the coast. The article’s nine authors, Verónica Fuentes, Gastón Alurralde, Bettina Meyer, Gastón E. Aguirre, Antonio Canepa, Anne-Cathrin Wölfl, H. Christian Hass, Gabriela N. Williams and Irene R. Schloss, suggest the first observed  and subsequent stranding incidents are connected to large volumes of particulate matter dumped into the ocean by melting glaciers. The high level of tiny rock particles carried by the glacial melt water may have clogged the digestive system of filter feeders like krill. The researchers conducted a series of experiments in which they exposed captive krill to water with varying amounts of particulates. The krill’s feeding, nutrient absorption and general performance were all significantly inhibited after 24 hours of exposure to concentrations of particles similar to those found in the plums of glacial runoff. Although krill are mobile creatures and can usually avoid harmful environments, exposure to the highly concentrated particles interfered with their ability to absorb nutrients from their food.  The krill became weak, which resulted in their inability to fight local ocean currents and their subsequent demise. About 90 percent of King George Island is covered in glaciers that are melting and discharging particles into the surrounding marine ecosystem, according to the article.  Similarly, an overwhelming majority of the 244 glacier fronts, a location where a glacier meets the sea, studied on the West Antarctic Peninsula have retreated over the last several decades, which suggests that high particulate count from glacial meltwater may be occurring in other parts of Antarctica. Since much of the Antarctic coast is not monitored and most dead krill sink to the bottom of the ocean, the authors caution that these stranding events likely represent a small fraction of the episodes.   In another recent study on climate change’s impacts on wildlife, scientific researchers with the Norwegian Polar Institute focus their attention on the high Arctic archipelago of Svalbard, Norway.  They found that glacial melting and changes in sea ice have impacted numerous land and sea animals in the Arctic. These shifts have the potential to influence more creatures. The study, by Sebastien Descamps and his coauthors, was published this May in...

Read More