Posts Tagged "Peru"

Roundup: Avalanches, Droughts, and a Sherpa protest

Posted by on Jun 5, 2017 in All Posts, Featured Posts, News, Roundup, Science | 0 comments

Roundup: Avalanches, Droughts, and a Sherpa protest

Spread the News:ShareRoundup: Avalanches, Droughts, and Sherpas   Calving Event in Peruvian Lake Damages Infrastructure Designed to Reduce Flood Risk From El Comercio: “Small ice avalanches have damaged the system of syphons in Lake Palcacocha, Ancash, Peru. Marco Zapata, the head of the Glacier Research Unit at INAIGEM, stated that on May 31, around 8 p.m., a calving event occurred at the glacier front on Mount Pucaranra, releasing ice into the lake. This event generated waves 3 meters in height, which caused 10 of the syphons to shift and which destroyed three gauges and a water level sensor.” Find out more about Lake Palcacocha and ice avalanches here.   Asian Glaciers Fight Against Drought From Nature: “The high mountains of Asia… have the highest concentration of glaciers globally, and 800 million people depend in part on meltwater from them. Water stress makes this region vulnerable economically and socially to drought, but glaciers are a uniquely drought-resilient source of water. Glaciers provide summer meltwater to rivers and aquifers that is sufficient for the basic needs of 136 million people… Predicted glacier loss would add considerably to drought-related water stress. Such additional water stress increases the risk of social instability, conflict and sudden, uncontrolled population migrations triggered by water scarcity, which is already associated with the large and rapidly growing populations and hydro-economies of these basins.” Find out more about Asia’s drought-resilient glaciers here.   Sherpas Demand Summit Certificates at Protest From The Himalayan Times: “Hundreds of sherpa climbers who met at Mt Everest base camp [in May] asked the government to immediately issue their summit certificates… Sherpa climbers who made it to the top of several peaks, including Mt Everest, have not been getting their summit certificates since last year after the government refused to approve their ascents citing a clause of the Mountaineering Expedition Regulation that bars them from obtaining such certificates… For most of the foreign climbers, summiting a mountain without sherpas’ help is almost impossible in Nepal… The new amendment to the regulation will recognize high-altitude workers as a part of the expedition to get certificates.” Find out more about the Sherpa protest and resolution here.     Spread the...

Read More

Using Drones to Study Glaciers

Posted by on May 2, 2017 in All Posts, Featured Posts, Science | 0 comments

Using Drones to Study Glaciers

Spread the News:ShareUnderstanding the nature of glacial changes has become increasingly important as anthropogenic climate change alters their pace and extent. A new study published in The Cryosphere Discussions journal shows how Unmanned Aerial Vehicles (UAVs), commonly known as drones, can be used to do this in a relatively cheap, safe and accurate way. The study represents the first time a drone has been used to study a high-altitude tropical Andean glacier, offering insight into melt rates and glacial lake outburst flood (GLOF) hazards in Peru. The study was carried out by Oliver Wigmore and Bryan Mark, from the University of Colorado Boulder and Ohio State University respectively. It is part of a larger project aimed at understanding how climate change is affecting the hydrology of the region and how locals are adapting to these changes. The researchers used a custom-built hexa-multirotor drone (a drone with propellers on six arms) that weighed about 2kg to study changes in Llaca Glacier in the central Cordillera Blanca of the Peruvian Andes. Llaca, one of more than 700 glaciers in the Cordillera Blanca, was chosen for both logistical and scientific reasons. It covers an area of about 4.68 square kilometers in Huascaran National Park and spans an altitudinal range of about 6000 to 4500 meters above sea level. Like other glaciers within the Cordillera Blanca, it has been retreating rapidly because of anthropogenic climate change. To obtain footage, the researchers had to drive three hours on a winding, bumpy road from the nearest town, located about 10km away from the valley. “This was followed by a half–hour hike to the glacier,” Wigmore stated. To overcome some of the challenges of working in a remote, high-altitude region, the drone was custom-built using parts bought directly from manufacturers. In this case, a base was bought from a manufacturer. “I modified it by making the arms longer, lightening it with carbon fiber parts, and adding features like a GPS, sensor systems, infrared and thermal cameras, and other parts required for mapping,” Wigmore shared. Building their own drone allowed the researchers to repair it or replace parts when necessary, as sending it off to be repaired while in the field was not possible. It also allowed them to customize the drone to their needs. “No commercial manufacturers could promise that our equipment would work above an altitude of about 3000m, which is well below the glacier,” Wigmore said. Using drones to study glaciers has advantages over conventional methods in terms of access to glaciers and spatial and temporal resolutions of data. These advantages have been further enhanced by hardware and software developments, which have made drones a relatively cheap, safe and accurate remote sensing method for studying glaciers at a finer scale. For example, Wigmore can build a UAV for about $4000, compared to the high cost of airplanes and satellites also used in remote sensing. Wigmore and his team carried out aerial surveys of the glacier tongue (a long, narrow sheet of ice extended out from the end of the glacier) and the proglacial lake system (immediately beyond the margin of the glacier) in July 2014 and 2015. The drone was flown about 100 meters above the ice while hundreds of overlapping pictures were taken to provide 3-D images and depth perception. High resolution (<5cm) Digital Elevation Models (DEMs) and orthomosaics (mosaics photographs that have been geometrically corrected to obtain a uniform scale) were produced, revealing highly heterogeneous patterns of change across the glacier and the lake. The data also revealed that about 156,000 cubic meters of ice were lost within the study period. The...

Read More

Local Communities Support Mountain Sustainability

Posted by on Apr 12, 2017 in Adaptation, All Posts, Featured Posts, Policy and Economics | 0 comments

Local Communities Support Mountain Sustainability

Spread the News:ShareInternational capacity-building collaborations have been initiated to observe glaciers and develop action plans in the tropical Andes and Central Asia. A recent study titled “Glacier Monitoring and Capacity Building,” by Nussbaumer et al., highlights the importance of glaciers in the Andes and Central Asia for water management, hydropower planning and natural hazards.  The Andes and Central Asia are among regions with the least amount of glacier observation data. For Central Asia, this was the result of the collapse of the Soviet Union from 1989 to 1991. In the Andes, institutional instability has been a continuous threat to the continuity of its glacier monitoring program. Monitoring glaciers in these regions can help mountain communities regulate their freshwater supply, manage the risks of glacier related hazards such as avalanches, and track declining runoff, all of which will have consequences for their socioeconomic development. Unfortunately, these two regions are also particularly vulnerable to the impacts of climate change. As one of the seven South American countries that contain the Andes Mountain Range, Peru recently utilized its glacier monitoring capabilities to assess potential flood risks posed by rapidly changing glaciers in the Cordillera Blanca, a smaller mountain range in the Andes.  Samuel Nussbaumer, the study’s lead author and a climate scientist, explained some of the hazards that changing glaciers can cause in Peru to GlacierHub. He explained that since there are “many new lakes emerging from retreating glaciers, ice could avalanche into these lakes,” which can be dangerous for the surrounding community. To reduce disaster risks in mountainous regions, glacier monitoring is crucial. “If an event happens, and glacier data is already prepared, then the community can assess the risk and determine why the event happened,” continued Nussbaumer. Another way that monitoring glaciers in these regions can help mountain communities is through freshwater supply regulation. The Cordillera Vilcanota in southern Peru provides water to the densely populated Cusco region. Glacier changes in Cordillera Vilcanota and other former Soviet Union countries in Central Asia, can have drastic consequences on the freshwater supply in mountain communities.  The majority of freshwater on Earth, about 68.7 percent, is held in ice caps and glaciers. The authors argue that data-scarce regions like Central Asia and the Andes must strengthen their glacier monitoring efforts to inform water management. This will help buffer the high and increasing variability of water availability in these regions. Furthermore, in Central Asia, interest and awareness in rebuilding the scientific, technical, and institutional capacity has risen due to water issues in the region. Declining freshwater runoff is spurring glacier awareness in Central Asia, specifically in Kyrgyzstan.  “Any assessment of future runoff has to rely on sound glacier measurements and meteorological data in order to get reliable results,” Nussbaumer said. To sustain capacity-building efforts, Nussbaumer et al. recommend strengthening institutional stability and resources throughout both regions. Nussbaumer concludes that “direct glacier measurements (in situ data) are key to achieving contributions to sustainable mountain development.”  Training youth to monitor and research local glaciers in their community could be a helpful approach. By monitoring how local glaciers change and evolve over time, communities in the Andes and Central Asia can strengthen their hazard management and freshwater regulation capacity. Local research capacities could also be improved by minimizing the bureaucratic barriers that block the implementation of glacial research projects. The World Glacier Monitoring Service (WGMS), which is supported by the United Nations Environment Programme, has a new project called “Capacity Building and Twinning for Climate Observing Systems” (CATCOS). Professor Martin Hoelzle of the University of Fribourg believes that CATCOS can support developing countries, and help them contribute to the international glacier research and...

Read More

Ice-core Evidence of Copper Smelting 2700 Years Ago

Posted by on Feb 28, 2017 in All Posts, Featured Posts, Science | 0 comments

Ice-core Evidence of Copper Smelting 2700 Years Ago

Spread the News:ShareThe mysterious Moche civilization originated on the northern coast of Peru in 200-800 AD. It was known for its metal work, considered by some to be the most accomplished of any Andean civilization. But were the Moche the first Andean culture to originate copper smelting in South America? While the Moche left comprehensive archaeological evidence of an early sophisticated use of copper, the onset of copper metallurgy is still debated. Some peat-bog records (records of spongy decomposing vegetation) from southern South America demonstrate that copper smelting occurred earlier, around 2000 BC. The question motivated Anja Eichler et al. to launch a massive study of copper emission history. The details of the findings were subsequently published in a paper in Nature. Eichler, an analytical chemistry scientist at the Paul Scherrer Institute in Switzerland, and her team presented a 6500-year copper emission history for the Andean Altiplano based on glacier ice-core records. This is a new methodology applied to trace copper smelting. “Copper is often referred to as the ‘backbone of Andean metallurgy – the mother of all Andean metals,’” Eichler explained to GlacierHub. “However, in contrast to the early copper metallurgy in the Middle East and Europe, very little information existed about its onset in the Andes.” The ice-core they used for their research was drilled at the Illimani Glacier in Bolivia in 1999, nearby sites of the ancient cultures. It provides the first complete history of large-scale copper smelting activities in South America and revealed extensive copper metallurgy. Illimani is the highest mountain in the Cordillera Oriental and the second highest peak in Bolivia. When asked about how she started her research, Eichler told GlacierHub, “I got involved in the project in 2012. At that time, PhD students and a post-doc had already obtained exciting findings and secrets revealed by ice-core records. We started looking at copper and lead as traces from copper and silver mining and smelting in the Andes.” The results of Eichler et al.’s study suggest that the earliest anthropogenic copper pollution occurred between 700–50 BC, during the central Andean Chiripa and Chavin cultures, around 2700 years ago, meaning that copper was produced extensively much earlier than people originally thought. “For the first time, our study provides substantial evidence for extensive copper metallurgy already during these early cultures,” said Eichler. One of the most challenging parts of the research is that copper can show up in the ice core from natural as well as human sources. Eichler’s team accounted for this by calculating the copper Enrichment Factor, which is applied widely to distinguish the natural and anthropogenic origin of metal. The principle of this methodology is to measure the occurrence of different metals. If copper appeared naturally due to wind erosion, it would be found in association with other metals that co-occur with it naturally. However, according to Eichler’s findings, there was only copper in central Andean Chiripa and Chavin cultures, without cerium or the other metals that occur with it in natural deposits. Hence, it was anthropogenic. The Chiripa culture existed from 1400 BC to 850 BC along the southern shore of Lake Titicaca in Bolivia,  near Illimani Glacier. Soon after the Chiripa, came the Chavin culture, a prehistoric civilization that developed in the northern Andean highlands of Peru from 900 BC to 200 BC, named for Chavín de Huantar, the principal archaeological site where their artifacts have been found. Copper objects from these earlier cultures are scanty. The reason why there is no sufficient archaeological evidence of copper usage, according to Eichler, is that very often artifacts were reused by subsequent cultures. “It is known that metallic objects cast by civilizations were typically scavenged from artifacts of their predecessors,”...

Read More

Photo Friday: The Melting Andean Glaciers

Posted by on Feb 3, 2017 in All Posts, Featured Posts, Images | 1 comment

Photo Friday: The Melting Andean Glaciers

Spread the News:ShareIn South America, the tropical glaciers of the Andes have been shrinking at an alarming rate, leaving the local communities at risk of losing an important water source. In Bolivia, for example, an Andean glacier known as the Chacaltaya Glacier disappeared completely in 2009, cutting off a valuable water resource to the nearby city of La Paz during the dry season. In total, the Andes Mountains are home to nearly 99 percent of the world’s tropical glaciers, with 71 percent located in Peru’s Cordillera Blanca and 20 percent in Bolivia, according to UNEP. Other tropical glaciers are found in the equatorial mountain ranges of Venezuela, Colombia and Ecuador. Over the past 30 years, scientists estimate that the glaciers of the tropical Andes have shrunk by 30 to 50 percent. This rate of decline predicts that within 10 to 15 years many of the smaller tropical glaciers will have completely disappeared. Take a look at GlacierHub’s collection of images of the rapidly retreating Andean glaciers.                                   Spread the...

Read More