Posts Tagged "glacier melt"

Glacier Melt Threatens Medicinal Plants in Pakistan

Posted by on Dec 1, 2016 in All Posts, Featured Posts, News, Policy and Economics, Science | 0 comments

Glacier Melt Threatens Medicinal Plants in Pakistan

Spread the News:ShareLack of access to health facilities is a massive problem facing developing countries. Zaheer Abbas et al. recently published a paper on the Karakoram Range in Northern Pakistan in which the communities have been relying on traditional methods for treating common physical ailments. Like many remote communities without access to modern health care, the Balti community have honed their traditional knowledge of local plants over the centuries using herbal treatments readily available to them in the Karakoram range. However, traditional knowledge is not well recorded in the region because medicinal plant concoctions are only passed down orally. This knowledge, if documented and shared, could inform other non-traditional medicine, according to Abbas et al. However, as R. Jilani et al. describe in another paper, if glaciers in Northern Pakistan start to melt, the reduction in the water resources could greatly affect the plants grown in the region, threatening the future use of Balti knowledge. The Karakoram Range, a large mountain range that spans across Pakistan, Afghanistan, China, India, and Tajikistan, is one of the most glaciated areas outside of the polar regions and also one of the most botanically diverse. The range is home to the Biafo Glacier, which is the third largest glacier in the Karakoram and the fourth largest in Asia. For now, as Abbas et al. explain, the glaciers in the Karakoram Range are stable and not experiencing glacier melt like other regions. This is due to the very high altitude of the glaciers and the fact that temperatures remain cold throughout the year. However, a paper by Rajiv Chaturvedi et al. explains that in climate scenarios where carbon emissions continue to increase, we can expect melting of the Karakoram glaciers to occur at a rapid rate. The region and its glaciers have not previously been studied in depth due to the area’s remoteness, high altitude and harsh climate. Adding additional complications to future research is the fact that there is no weather station in the region, so temperature readings typically come from Skardu, 55 km away. This raises questions about the future impact of climate on the use of medicinal plants and traditional Balti knowledge. For their Karakoram study, Abbas et al. interviewed 69 inhabitants of the region, including five herbalists, in order to understand how regional plants are used by the local communities for medicinal purposes. As Abbas et al. explain, many modern drug discoveries have been based on medicinal plants used by indigenous people. For this study, the team explored a total of 63 plant species, and with the help of the Balti people, categorized the plants into uses for 11 common diseases and disorders. They also looked at  how effective the plants were at resolving those particular health issues based on a scale of 1 to 5 (5 being most effective). The common health issues ranged from anything from a common toothache to kidney stones. The study also showed the diversity of the plant parts used in the remedy, including flowers, seeds, leaves, and in some cases, the entire plant. The majority of the species studied were indigenous to the Tormik Valley due to its microclimate. The Tormik Valley is lush and fed by freshwater streams and springs. Of the 63 species examined, three of them were particularly valuable due to their effectiveness, and each scored a 4 or 5 on the scale. Thymus linearis (a shrub with small dark purple blooms), commonly known as Himalayan thyme or common thyme and belonging to the Mint family, is used by the Balti people to treat abdominal pain and vomiting. Hippophae rhamnoides, commonly known...

Read More

Precipitation Controls Retreat of Kerguelen’s Glaciers

Posted by on Oct 18, 2016 in All Posts, Featured Posts, Science | 0 comments

Precipitation Controls Retreat of Kerguelen’s Glaciers

Spread the News:ShareIslands in the Indian Ocean are not the first to come to mind when glacier retreat is mentioned. However, glaciers in the Kerguelen Islands, located at sub-polar latitudes in the southern hemisphere, have been experiencing widespread and rapid retreat in recent years. While rising temperatures are generally assumed to be the main cause of glacial retreat, a recent study published in Nature revealed that a reduction in precipitation is the dominant factor controlling the retreat of glaciers in the Cook Ice Cap on the Kerguelen. Similar conclusions were made in a study of Kilimanjaro’s melting glaciers, and this study could offer further insight into the effect of circulation changes on glaciers. The Kerguelen Islands are among the most isolated places on Earth. Located on the seaway between South Africa and Antarctica, they are only accessible by boat and serve as a nesting ground for many bird species, such as the Macaroni Penguin. Glaciers cover about 500 square kilometers of the islands, and the loss of ice from these glaciers was among the most serious in the world in the 2000s, according to the study mentioned above. Uncertainty surrounding the effects of climatic changes on glaciers in the southern mid-latitudes is particularly high due to a lack of observational data on glaciers and ice caps. Along with a lack of full modeling studies, this has led to the general assumption that warming is the main driver of glacial loss, as is the case in the northern mid-latitudes. A team of scientists led by Vincent Favier, a researcher at Université Grenoble Alpes, set out to test the hypothesis that glacial retreat on the Kerguelen was largely due to increasing temperatures. The Cook Ice Cap was a suitable site for study because it is mainly made up of glaciers, which links its mass variations more strongly to climate variations than other ice caps at similar latitudes. In addition,  the availability of long term climate and glaciological observations in the region made it possible to produce accurate models of glacial mass balance from 1850-2011. Using a combination of field data, satellite data, and climate and glacial models, the team was able to attribute 77% of ice loss since the 1960s to atmospheric drying, with temperature increases only amplifying the losses. The researchers used the decade between 1950 and 1960 as a reference period for glacial mass and modelled changes in glacial mass using different hypothetical temperature and precipitation values. 1000 different simulations were run, revealing that dryness is the dominant influence on glacier wastage despite the increase in temperatures in the Kerguelen since the 1960s. The dominant influence of precipitation is particularly evident in glacier mass balance trends between 1963-1975, when both temperatures and mass balance increased. This seemingly paradoxical observation was due to higher levels of precipitation experienced during this period. Precipitation over the Kerguelen is influenced by the north-south movement of wind belt in the middle latitudes of the Southern Hemisphere – the Southern Annular Mode (SAM). It brings stormy weather to the Kerguelen when it is in a more northerly position, also known as its negative phase. Since 1975, the SAM has been in southerly positions more frequently, increasing atmospheric dryness over the Kerguelen. This is associated with ozone layer depletion and increases in greenhouse gas emissions, suggesting that the frequency of positive phases of SAM is likely to increase over the course of the century and worsen glacier retreat in the Kerguelen. Darker surfaces exposed by this loss of glacial ice could exacerbate melting in what is known as the ice-albedo negative feedback mechanism. These surfaces absorb more...

Read More

Peru Faces Tensions Over Water

Posted by on Dec 23, 2015 in All Posts, Communities, Featured Posts, Policy and Economics | 0 comments

Peru Faces Tensions Over Water

Spread the News:SharePeru will face a “new normal” as greater agricultural and energy demands, population growth and climate change chip away at what is left of its glaciers, according to a recent article in the Yale Journal of International Affairs. Glacial retreat could ultimately lead to conflict in the country, the author found. “Peru offers an early view of the challenges mountainous regions worldwide may face in coming decades,” wrote Peter Oesterling, the author. “The country—if successful—may also provide the world a model for effective policies to mitigate threats to environmental and human security.” For people in Peru, glaciers are the essence of their existence. Most people live on the west coast, an arid region, and rely on glacier meltwater for day to day use, crops, hydroelectric power and mining. But since the early 1980’s, Peru’s glaciers have shrunk by more than 22 percent. Further loss could lead to increased risk of flooding and water scarcity as well. Already, seven out of nine watersheds in the Cordillera Blanca are already past “peak water,” meaning that the glaciers have passed the upper limit of melt water they can release. At the same time, water demand in Peru is on the rise as water security dwindles. The population is projected to grow by 35 million by 2020, which will put pressure on the country’s existing land and water resources. Millions of households rely on the  Cañon del Pato hydropower plant on the Rio Santa, but as water availability declines, the plant could lose 40 percent of its power generating capability. The country’s mining industry also consumes a great deal of water. Eleven percent of Peru’s land is being mined for minerals. In addition to using water for mineral extraction, mining releases contaminated water back into the watershed. “Peru’s trends in water use and supply are incompatible,” wrote Oesterling. “Glacially-fed rivers are already at emergency levels—insufficient for the country’s agricultural and hydroelectric demands during the dry season.” The result has been socio-environmental tensions in the country, which have roots in the country’s history. Peru’s government historically cut indigenous communities off their land and limited their access to water resources for the sake of economic development. Still now local populations are dis-empowered and unable to take part in any decision making processes on their land even though they are the first to suffer from water contaminated by mining. Oesterling discusses a protest in which angry villagers blocked a major highways for several days, even though they were physically attacked by police, in order to bring attention to the concerns over pollution from mines. To prevent future conflict, the country will need better regulatory processes that shifts the responsibility of environmental impact assessments away from private companies and into the hands of government bodies, said Oesterling. Existing regulatory government bodies could also benefit from being strengthened. “With a sound response that addresses clean water access, environmental protection, and public participation in resource allocation decision-making, Peru can mitigate the effects of glacial recession and acclimate to new environmental realities,” he concluded. “Yet—much like Peru’s water supply—the time for effective action against glacial recession is dwindling—and quickly.” Spread the...

Read More

Life on the Edge: The Science of Glaciers that Meet Oceans

Posted by on Dec 15, 2015 in All Posts, Featured Posts, Science | 0 comments

Life on the Edge: The Science of Glaciers that Meet Oceans

Spread the News:ShareIn an October 2015 article in Earth & Space Science News, David Holland and Denise Holland suggest steps to increase the understanding of glacier melt to improve projections of sea level rise. IPCC (Intergovernmental Panel on Climate Change) reports have concluded that anthropogenic causes are to blame for glacier retreat in the last century. They predict that increased melt in the present century will rise global sea levels. The authors report that the contribution of the West Antarctic Ice Sheet, alone will change low-lying coastal and communities worldwide and threaten marine ecosystems. They note that the rate of sea level rise will be influenced by a number of factors, including the local shifts in the gravitational pull of land masses, along with changes in water currents, wind patterns, and water temperature and salinity. The rebound of land masses, once the weight of glaciers and ice sheets is removed, will also influence sea levels. The complex nature of the interface between ice sheets and the ocean also creates uncertainty about the future of many of the West Antarctic glaciers, as it is difficult to make predictions of how the ice will react in the future. In one possible scenario, the circulation of warm ocean waters that is currently held off by continued cold meltwater runoff from Antarctica could grow larger, and the cold water barrier would no longer block it from teaching the continent. The warm water would thus be able to make direct contact with the underside of the glacier and warm it from below, greatly increasing the glacier melt. Holland and Holland note that many problems with predicting the effects of West Antarctic glacier melt stem from a deficit of data. Though satellites are able to measure glacier volume, they are unable to observe the water resting underneath glaciers or the land mass upon which some glaciers rest. Another area of difficulty in predicting the melting of the West Antarctic glacier involves a shortfall in scientific understanding of calving—the process in which the section of a glacier front breaks and falls into the ocean. Scientists compare the difficulties of constructing models of calving to the challenges of predicting earthquakes. They remain unable to make long-term predictions about when they will occur. Holland and Holland state that in order to create accurate predictions for the contributions of the West Antarctic Ice Sheet to sea level rise, scientists need to couple glacier and ocean models. Currently there is little cooperation between glaciologists and oceanographers, even though both work on sea level rise since each uses separate models specific to their disciplines. To address this problem Holland and Holland report, the World Climate Research Programme (WCRP) has established a project, Climate and Cryosphere (CliC). This project held a meeting in October 2014, in which the Marine Ice Sheet–Ocean Model Intercomparison Project (MISOMIP) was established. The project seeks to draw on the efforts glaciological and oceanographic modelers. The participants in the project work together to create coupled and interactive glacier-ocean models. The goal is to follow this suite of glacier-ocean models with regional simulations of specific outlet glaciers such as those found in West Antarctica. Holland and Holland say that scientists, by coupling glacier and ocean models, can greatly improve the accuracy of future sea level rise projections attributed to the West Antarctic Ice Sheet and its outlet glaciers. Because of the increasing threat of sea level rise to communities around the world, the accuracy of such projections is of great value. It is to be hoped that this importance will support efforts to produce these projections, which require increased...

Read More

Roundup:The Melting World, Frozen Stories and Ice Artifacts

Posted by on Nov 9, 2015 in All Posts, Featured Posts, News, Roundup | 0 comments

Roundup:The Melting World, Frozen Stories and Ice Artifacts

Spread the News:ShareAlpine glaciers have already begun to disappear worldwide “As world temperatures soar, public outcry has focused on the threat to polar ice sheets and sea ice. Yet there is another impact of global warming—one much closer to home—that spells trouble for Americans: the extinction of alpine glaciers in the Rocky Mountains. The epicenter of the crisis is Glacier National Park, Montana, whose peaks once held one-hundred-and-fifty glaciers. Only twenty-five survive. The Park provides a window into the future of climate impacts for mountain ranges around the globe. The Alps, Andes, Cascades, Rockies, and Himalayas are suffering staggering losses. Glaciers provide more than fifty percent of our freshwater needs worldwide—for drinking, irrigation, and hydroelectric power. What’s more, alpine ice feeds innumerable watersheds that harbor ecosystems crucial to fish and wildlife. Nowhere is this truer than in the mountains of Montana.” Read more about the story, click here.   FROZEN STORIES – Discoveries in the Alpine glaciers “Climate change also has its archaeological aspect. It can bring to light what has been hidden under glacial ice for a very long time. Ötzi was not the only lucky find of the last decades. Many other objects have been exposed from the ice,recounting exciting stories from a distant past. And every new discovery gives rise to the question: What was it that drove people onto the glaciers for thousands of years? FROZEN STORIES is an exhibition of rare and in some cases only recently discovered finds from the glacier regions of the Alps, some of them appearing in public for the first time.A multimedia tour with animations, videos and original finds explains the glacier phenomenon to visitors in all its exciting topicality.” Read more about frozen story,click here.   Swiss rush to find ice artifacts as glaciers melt “With Swiss glaciers expected to melt away within a half-century, a Swiss cultural institute and a graduate student in the canton (state) of Graubuenden have launched a pilot project through the end of 2015 to gather artifacts trapped long ago in the ice that are now turning up. The clock is ticking, they say, because once the ice melts away the items will no longer be preserved. Leandra Naef, who has a master’s degree in prehistoric archaeology, told Swiss news agency swissinfo.ch that the project in eastern Switzerland’s mountains “has to happen now, or else it will be too late, if it’s not already too late.”   Read more about glaciers melt, click here. Spread the...

Read More