Posts Tagged "Climate Change"

Putting Your Best Tusk Forward: Narwhals and Climate Research

Posted by on Jun 20, 2017 in All Posts, Featured Posts, Science | 0 comments

Putting Your Best Tusk Forward: Narwhals and Climate Research

Spread the News:ShareIn 1576, Queen Elizabeth I paid the equivalent of half a million dollars for a unicorn horn, which she believed could neutralize poison. Of course, it wasn’t a unicorn horn at all, but a narwhal tusk, remarkable in its own right. Today, over 440 years later, narwhals continue to surprise and attract attention. A recent paper in Biology Letters by Kristin Laidre et al. examined narwhal visits to glacial fronts in West Greenland. “We don’t fully understand the relation between narwhals and glaciers,” professor Mads Heide-Jørgensen of the Greenland Institute of Natural Resources told GlacierHub. Laidre added, “Narwhals in places like the Canadian Arctic, for example, have limited access to glacial habitat. However, in Greenland, most narwhals are close to glaciers in summer because Greenland is so glaciated, and there are glaciers along the entire coastline.” It has long been observed that narwhals visit glacial fronts in the summer and autumn, but it is unknown why they seek out this habitat. “Glaciers are productive regions,” commented Laidre. “They attract prey, there’s upwelling and nutrient cycling, and sometimes even osmotic shock to small invertebrates which attracts fish… We hope future studies will help us understand this, but we don’t know exactly why they go there.” Belugas, the “sister species” to the narwhal, also favor freshwater habitat in the summer, seeking out shallow water estuaries. To begin answering this question, Laidre took a novel approach, forming an international, cross-disciplinary team that included scientists from the U.S., Denmark, and the U.K. “The idea was to get biologists and glaciologists to collaborate and share data in an interdisciplinary way,” Laidre said. The team evaluated which glacial characteristics draw narwhals by collecting data from 15 satellite-tagged whales and following their movements through the fjords of Melville Bay in West Greenland. The narwhals demonstrated three preferences: they spent more time at glaciers that discharge a fresher, rather than siltier melt; they preferred slower-flowing glaciers, which are more stable and calve less; and they favored thicker glacial fronts, perhaps because they maximize access to freshwater. Sea ice also provides important habitat for narwhals. “All narwhal populations winter, and some even summer, in dense sea ice concentrations,” said Heide-Jørgensen. In summer, narwhals spend time in the high Arctic where ice has receded, and in fall, the ocean freezes solid, pushing the narwhals away from shore, Laidre explained. “They swim away from the forming ice and move offshore, where they overwinter in dense ice cover with cracks so they can breathe. Narwhals are highly associated with sea ice, perhaps the most of all whales,” he said. Heide-Jørgensen indicated that narwhals will seek out the sea ice when it decreases in coverage rather than wintering in open water. “Reduction of sea ice therefore implies a reduction in habitat, and this will again introduce a reduction in prey base or carrying capacity. In short, less sea ice means less narwhal habitat and eventually less narwhals,” he said. Laidre agreed that “changes in sea ice and the marine ecosystem will likely be the most important factor” to the future of narwhals as climate changes. Since 1979, sea ice freeze-up has occurred almost a month later in Baffin Bay and Melville Bay, where this study took place, and glaciers, of course, are retreating. But far from being simple victims of global warming, narwhals can aid in the collection of data that can help mitigate climate change. In 2005 and 2007, Laidre took advantage of narwhals’ capacity for deep dives and tendency to winter in sea ice, outfitting narwhals with temperature and depth sensors. Narwhals regularly dive over 1,700 meters to...

Read More

Photo Friday: A Look at Wolverine Glacier

Posted by on Jun 16, 2017 in All Posts, Featured Posts, Images, Science | 0 comments

Photo Friday: A Look at Wolverine Glacier

Spread the News:ShareWolverine Glacier is a valley glacier with maritime climate and high precipitation rates situated in the coastal mountains of Alaska’s Kenai Peninsula. This glacier has been named a “reference glacier” by the World Glacier Monitoring Service because it has been monitored and observed since 1965/66. A majority of the U.S. government’s climate research is taken from 50 years of glacier studies from the United States Geological Survey (USGS). Scientists first decided to take measurements of Wolverine Glacier’s surface mass balance in 1966, using these measurements, as well as local meteorology and runoff data, to estimate glacier-wide mass balances, according to USGS. This data, which makes up the longest continuous set of mass-balance data in North America, allows scientists to better understand glacier dynamics and hydrology, as well as the glaciers’ response to climate change. As temperatures rise, the retreat of glaciers in Alaska is contributing to global sea-level rise. The Wolverine Glacier has been experiencing more variability in winter temperatures, and scientists are continuing to evaluate how glaciers like the Wolverine respond to climate change. Take a look at GlacierHub’s collection of images from Wolverine Glacier.           Spread the...

Read More

Let it Snow… and Save a Glacier

Posted by on May 30, 2017 in All Posts, Featured Posts, News | 0 comments

Let it Snow… and Save a Glacier

Spread the News:ShareNews about shrinking glaciers is not uncommon, but have you ever heard of regrowing one artificially? That is exactly what a team of researchers intends to do: use snow machines, also known as Schneekanonen (snow-cannons) in German, to save Morteratsch Glacier in the Swiss Alps. Felix Keller, a glaciologist at the Academia Engiadina in Switzerland, and Johannes Oerlemans, director of the Institute for Marine and Atmospheric Research at Utrecht University in the Netherlands, will use snow machines to slow down, or even reverse, the retreat of the glacier as announced at the annual meeting of the European Geosciences Union in Vienna, Austria, on April 27th. Morteratsch, located in Pontresina in the canton of Graubünden, is the third largest glacier in the Eastern Alps. It is also one of the most easily accessible glaciers: a 50-minute walk from Morteratsch train station along a hiking trail leads visitors directly to the glacier tongue. This makes it a popular tourist attraction that contributes to the economy of the region. However, the glacier has been shrinking rapidly because of climate change, retreating about 2.5 kilometers over the last 150 years. The plan to save the glacier using snow machines was inspired by the successful use of white fleece coverings to slow down the retreat of the nearby Diavolezzafirn Glacier. This method has been applied over the past 10 years to help the glacier grow by up to 8 meters in length. Locals reached out to Oerlemans and Keller, who have done prior research in the region, to try to save Morteratsch in a similar manner, except the latest plan involves covering sections of the glacier with snow to reduce melting during the summer. “The municipality of Pontresina, in whose territory the glacier is situated, is trying to position itself as a village at the forefront of climate change issues,” Daniel Farinotti, a glaciologist at both Swiss Federal Institute of Technology (ETH) in Zurich and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), shared in an interview with GlacierHub. A layer of snow will protect the ice from incoming radiation, which would warm up the glacier. A secondary and smaller effect would be to protect the ice from overlying air, which could be above freezing. Models used by the researchers suggest that a thin layer of snow covering under one square kilometer at the top of the glacier would be enough to protect the glacier. Oerlemans also estimates that this could help the glacier regain 800 meters of length in two decades. This plan would involve the use of 4,000 snow machines, which produce snow from water and pressurized air. They will be supplied with meltwater from a nearby glacier, which addresses a key concern: “If we want to do it on a larger scale, the main challenge will be the availability and transportation of meltwater onto the glacier,” Oerlemans shared with GlacierHub. Not everyone is convinced that the plan will work. “I am still a little skeptical that the technical problems are solved and would like to see answers to some questions,” Greg Greenwood, executive director of the Mountain Research Initiative, shared with GlacierHub. These questions include exactly where the snow will be deposited, financial and environmental costs, and a comparison with other technical options. Oerlemans and Keller are currently conducting a pilot project costing $100,000 at the foot of Diavolezzafirn glacier, also in Switzerland. 13 feet of snow will be blown over the 1,300-square-foot glacier by the end of the month. If it works, they hope that the Swiss government will fund the Morteratsch project, which will cost several million Swiss...

Read More

Photo Friday: Glaciers in Films

Posted by on Apr 21, 2017 in All Posts, Art/Culture, Featured Posts, Images | 0 comments

Photo Friday: Glaciers in Films

Spread the News:ShareMagnificent, beautiful and mysterious, glaciers are a critical part of nature. For thousands years, humans have responded to glaciers through art, incorporating them in paintings, poems, folk songs, and more recently, movies. With the development of modern arts, specifically the film industry, glaciers have popped up in a range of creative endeavors from documentaries to animated pictures. Explore some popular films featuring glaciers with GlacierHub.   Chasing Ice Chasing Ice (2012) is the story of one man’s quest to gather evidence of climate change. A documentary film about environmental photographer James Balog, it tells the story of his trip to the Arctic to capture images to help tell the story of Earth’s changing climate. The film included scenes from a glacier calving event lasting 75 minutes at Jakobshavn Glacier in Greenland, the longest calving event ever captured on film. “Battling untested technology in subzero conditions, he comes face to face with his own mortality,” the film introduction states. “It takes years for Balog to see the fruits of his labor. His hauntingly beautiful videos compress years into seconds and capture ancient mountains of ice in motion as they disappear at a breathtaking rate.”     Ice Age Ice Age (2002) is one of the most popular animations in the world and its sequels have continued to delight thousands of children and adults. First directed by Chris Wedge and produced by Blue Sky Studios, the film is set during the ice age. The characters in the film must migrate due to the coming winters. These animals, including a mammoth family, a sloth Sid, and a saber-tooth tiger Diego, live on glaciers. They find a human baby and set out to return the baby. The animation won positive reviews and awards, making it a successful film about glaciers.       James Bond Jökulsárlón, an unearthly glacial lagoon in Iceland, makes its appearance in several James Bonds films, including A View to Kill (1985) and Die Another Day (2002). A View to Kill, starring Roger Moore, Christopher Walken and Tanya Roberts, was also filmed on location at other glaciers in Iceland, including Vatnajökull Glacier in Vatnajökull, Austurland, Iceland.     China: Between Clouds and Dreams The documentary China: Beyond Clouds and Dreams (2016) is an award-winning new series by Director Phil Agland. The five-part series tells intimate human stories of China’s relationship with nature and the environment as the country grapples with the reality of global warming and ecological collapse. See the trailer here. Commissioned by China Central Television and filmed over three years, the film includes a scene of glaciers on the Tibetan Plateau, where the impacts of climate change are most obvious.         Spread the...

Read More

Explore the Homeland of the Emperor Penguin

Posted by on Apr 11, 2017 in All Posts, Featured Posts, Images, Science | 0 comments

Explore the Homeland of the Emperor Penguin

Spread the News:Share“Each winter, thousands of Emperor Penguins leave the ocean and start marching to a remote place in Antarctica for their breeding season. Blinded by blizzards and strong winds, only guided by their instincts, they march to an isolated region, that does not support life for most of the year…” – March of the Penguins The famous documentary March of the Penguins, directed by Luc Jacquet, earned the emperor penguin fanfare and admiration around the world. With their charismatic shape and loving nature, emperor penguins reside on the ice and in the ocean waters of Antarctica for the entirety of their lifespan, living on average from 15 to 20 years.  Satellite data has been used to help researchers better understand emperor penguin populations and how they respond to environmental variability, including the threat of a rapidly warming planet. But the information gleaned so far remains too limited to significantly help conservation efforts. Enter André Ancel, a researcher who led a team on a mission to study the remaining areas where emperor penguins might breed. His team recently published their findings in the journal Global Ecology and Conservation. March of the Penguins Official Trailer:   “The climate of our planet is undergoing regional and global changes, which are driving shifts in the distribution and phenology of many plants and animals,” Ancel writes in his paper. “We focus on the southern polar region, which includes one of the most rapidly warming areas of the planet. Among birds adapted to live in this extreme and variable environment, penguin species are the best known.” Even with their extreme adaption capabilities, emperor penguin breeding colonies are impacted by the fact that chicks often succumb to Antarctic elements. “Though they are one of the tallest and heaviest birds in the world, the survival rate of newborn emperor penguins is really low, only about 19 percent,” Shun Kuwashima, a PhD student at UCSC and self-declared penguin lover, explained. The purpose of Ansel et al.’s research was to predict how the species responds to climate change and to better understand the penguins’ biogeography, or geographical distribution. “There are only about 54 known breeding colonies,” notes Ancel, “many of which have not yet been comprehensively studied.” But finishing the research was a problem, considering that access to emperor penguin colonies remains limited. Getting accurate measurements on the size and location of the colonies relies on ground mapping and aerial photographs, which is “laborious, time consuming and costly,” according to Ancel. Even with the help of satellites, heavy cloud cover in the winter degrades the quality of images. Not to mention, the lack of light further complicates the collection of accurate data. In addition, the break-out of sea ice at the end of the breeding season can reduce the probability of detecting breeding colonies. Although the authors did not actually conduct any exploration or examine remote sensing data to locate new emperor penguin colonies, they used data on the location of known colonies to make their findings. Based on the behavioral patterns of penguins, including movement and dispersal, and on the availability of food, the researchers found “six regions potentially sheltering colonies of emperor penguins.” It is true that scientists have looked for emperor penguin colonies with satellite data in the past, but the method was limited. To make improvements and find potentially missing colonies, the team developed an approach for calculating separation distance between colonies. The approach determined the loxodromic separation distance (the shortest distance between two points on the surface of a sphere) between each pair of geographically adjacent colonies. Then, based on the fact that a breeding adult...

Read More