Posts Tagged "bhutan"

Flood Early Warning Systems Leave Women Vulnerable

Posted by on Feb 9, 2017 in All Posts, Communities, Featured Posts, Policy and Economics | 0 comments

Flood Early Warning Systems Leave Women Vulnerable

Spread the News:ShareGlacier lake outburst floods (GLOFs) pose an immediate threat to locations in mountain regions where rising temperatures contribute to glacier melt. This risk makes it crucial that communities at risk to GLOFs develop early warning systems (EWS) to alert residents of impending danger. In order for EWS to be effective, gender needs to be prioritized. In a recent paper published by the International Center for Integrated Mountain Development (ICIMOD), Mandira Shrestha et al. evaluated flood early warning systems in Bhutan and found that many EWS exclude women, who are especially susceptible to natural disasters like GLOFs. GLOFs, which are difficult to predict and devastating to local populations, occur when meltwater is suddenly released from a lake just below a glacier. When this occurs, large amounts of water rush down valleys, picking up debris. They can lead to many deaths and to extensive destruction of fields and property.   In total, Bhutan has 24 lakes which are capable of causing GLOFs.  As temperatures rise, glacier melt increases, leading to exposed moraines and larger volumes of water. However, an EWS can help save lives during a GLOF, especially if it is combined with preparatory actions before a flood occurs. In Bhutan, the EWS was first introduced in 1988 as part of the Hindu Kush Himalayan – Hydrological Cycle Observing System (HKH-HYCOS), a project developed by ICIMOD, national governments in the region, and the World Meteorological Organization. However, Shrestha et al. found that none of the current policies in Bhutan’s EWS address specific needs and experiences of women during natural disasters. In planning documents, women are described as victims, rather than presented as playing an important role in disaster risk management. The Bhutan EWS contains four major elements, also found in other warning systems: risk assessment, monitoring and warning, dissemination and communication, and response capability. The Bhutanese government first prioritized flood early warning systems in 1994, following a detrimental GLOF, which killed 12 people, destroyed 21 homes, and washed away nearly 2,000 acres of land. Shrestha et al. point out that even a good warning system would not be fully effective in preventing such a tragedy if it fails to reach vulnerable populations like women, as well as other such populations including children, disabled people, and the elderly. As Shrestha et al. explain, while women in Bhutan make up 49% of the population and legally have equal rights and access to education, public services, and health care, most women engage in household labor, while men dominate political work. The authors indicate that only 25 percent of women in Bhutan are involved in non-agricultural work. Extensive male out-migration in Bhutan, as elsewhere in the Hindu Kush Himalayas, leaves women to carry out the work in domestic agriculture. As a result, Bhutanese women are excluded from decision-making processes at community or larger scales. This pattern is reflected in other nearby countries as well.  One study done on disaster-affected people seeking mental health care in Bangladesh, which has the highest natural disaster mortality rate in the world, found that women have higher mortality rates in natural disasters, and are also extremely vulnerable in the aftermath of a natural disaster. For example, they are more likely to face food shortage, sexual harassment, and disease, among other issues. Shrestha et al. describe how the social structure in Bhutan leaves women dependent on men for receiving disaster information, because these details are shared in public places, where women typically do not go. Many of the alerts are done through sirens, but some women cannot hear them as they are located in towns rather than rural areas. Even if women do receive the information, it is...

Read More

Roundup: Rock Glaciers, Ice Tongues and Flood Warnings

Posted by on Jan 23, 2017 in All Posts, Featured Posts, News, Roundup, Science | 0 comments

Roundup: Rock Glaciers, Ice Tongues and Flood Warnings

Spread the News:ShareRoundup: Rock Glaciers, Floating Glaciers, and Flood Warnings Ecology of Active Rock Glaciers From Boreas: “Active rock glaciers are periglacial landforms (areas that lie adjacent to a glacier or ice sheet that freeze and thaw) consisting of coarse debris with interstitial ice (ice formed in the narrow space between rocks and sediment) or ice-core. Recent studies showed that such landforms are able to support plant and arthropod life and could act as warm-stage refugia for cold-adapted species due to their microclimate features and thermal inertia. However, integrated research comparing active rock glaciers with surrounding landforms to outline their ecological peculiarities is still scarce… Our data show remarkable differences between stable slopes and unstable landforms as a whole, while few differences occur between active scree slopes and active rock glaciers: such landforms show similar soil features but different ground surface temperatures (lower on active rock glaciers) and different occurrence of cold-adapted species (more frequent/abundant on active rock glaciers)… The role of active rock glaciers as potential warm-stage refugia for cold-adapted species is supported by our data; however, at least in the European Alps, their role in this may be less important than that of debris-covered glaciers, which are able to host cold-adapted species even below the climatic tree line.” Read more about the role of active rock glaciers as potential warm-stage refugia here:   Fluid-Ice Structure Interaction of the Drygalski Ice Tongue From UTAS: “The Drygalski Ice Tongue (DIT) is the largest floating glacier in Antarctica, extending approximately 120km into McMurdo Sound, and exhibits a significant influence upon the prevailing northward current, as the ice draft (measurement of ice thickness below the waterline) of the majority of the DIT is greater than the depth of the observed well-mixed surface layer. This influence is difficult to characterize using conventional methods such as in-situ LADCP (Lowered Acoustic Doppler Current Profiler) measurements, vertically collected profiles or long-term moorings as these are generally relatively spatially sparse datasets. In order to better relate measurements across the entire region of influence of the DIT region, a set of Computational Fluid Dynamics simulations (uses numerical analysis to analyze fluid flows) were conducted using a generalized topography of a mid-span transect of the DIT… Numerical modeling of environmental flows around ice structures advances the knowledge of the fluid dynamics of the system in not only the region surrounding the DIT but also provides a clearer insight into fluid-ice structure interactions and heat flux in the system. This may lead to a better understanding of the long-term fate of floating glaciers.” Learn more about fluid-ice structure interactions here:   Flood Early Warning Systems (EWSs) in Bhutan From ICIMOD: “Bhutan experiences frequent hydrometeorological disasters. In terms of relative exposure to flood risk as a percentage of population, Bhutan ranks fourth highest in the Asia-Pacific region, with 1.7% of its total population exposed to flood risk. It is likely that climate change will increase the frequency and severity of flood disasters in Bhutan. Inequalities in society are often amplified at the times of disaster and people living in poverty, especially women, the elderly, and children, are particularly vulnerable to flood hazards. Timely and reliable flood forecasting and early warnings that consider the needs of both women and men can contribute to saving lives and property. Early warning systems (EWSs) that are people-centered, accurate, timely, and understandable to communities at risk and that recommend the appropriate action to be taken by vulnerable communities can save people more effectively. To improve the understanding of existing early warning systems (EWSs) in the region and their effectiveness, ICIMOD has conducted an assessment of...

Read More

Ice-Spy: Declassified Satellite Images Measure Glacial Loss

Posted by on Jan 5, 2017 in Adaptation, All Posts, Featured Posts, Policy and Economics, Science | 0 comments

Ice-Spy: Declassified Satellite Images Measure Glacial Loss

Spread the News:ShareSince the 1960s, images from spy satellites have been replacing the use of planes for reconnaissance intelligence missions. Making the transition from planes to satellites was prompted by an infamous U-2 incident during the Cold War when U.S. pilot Francis Gary Powers’ U-2 spy plane was shot down in Soviet air space. Five days later, after considerable embarrassment and controversy, President Eisenhower approved the first launch of an intelligence satellite, part of a new scientific electronic intelligence system termed ELINT. Today, declassified images from satellites have resurfaced to support scientific research on glaciers and climate change. Scientists from Columbia University and the University of Utah created 3-D images of glaciers across the Himalayas, and Bhutan specifically, by using satellite imagery to track glacial retreat related to climate change. Joshua Maurer et al. published the results of their Bhutan study in The Cryosphere to help fill in the gaps of “a severe lack of field data” for Eastern Himalayan glaciers. Being able to understand and quantify ice loss trends in isolated mountain areas like Bhutan requires physical measurements that are currently not available due to complex politics and rugged terrain. Luckily, the scientists found an alternative route to reach their measurement goals by comparing declassified spy satellite images from 1974 with images taken in 2006 using the ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer, a spaceborne imaging instrument aboard NASA’s earth-observing Terra satellite. Bhutan has hundreds of glaciers and glacial lakes. Physical data collection can be a daunting process in such a region considering the vast quantity of glaciers in combination with freezing weather conditions and high winds. The lead researcher of the Bhutan study, Joshua Maurer from Columbia University, experienced firsthand the logistical challenges associated with directly measuring changes in glacial ice density when conducting research on glacial change in the remote and high-altitude regions of Bhutan. Inspired by this difficult experience, Maurer collaborated with other scientists from the University of Utah to find alternative methods for quantifying trends in glacial ice density. Maurer and the team of researchers devised a strategy to use declassified satellite images to collect data by a process of photogrammetry, the use of photographs to survey and measure distances. More than 800,000 images from the CORONA Satellite program, taken in the 1970s and 1980s, have been sent to the U.S. Geological Survey from the Central Intelligence Agency (CIA), and made available to the public. Several advanced mathematical tools are necessary for making measurements from raw image files. For this particular study, the team used the declassified photos from the 1970s to track changes in glacial ice coverage over time when compared to more recent images from the Hexagon Imagery Program database taken by the Swiss-based Leica Geosystems’ airborne sensors in 2006. Once a timeline was created from the pictures, measurements were made using NASA’s space tool ASTER. This method, Maurer argues, is the solution for measuring massive amounts of hard-to-access data. But making precise measurements integrating several sets of images from different periods of time is no simple task. Pixel blocks, minute areas of illuminations from which images are composed, were processed to correspond with regions designated on the film. The blocks of pixels were then selected to maximize coverage of glaciers and avoid regions with cloud cover. Computer-generated algorithms transform these blocks of image into measurements using automated point detectors and descriptors. Images from the declassified satellite database may suffer from a lack of clarity, so it was also important for the researchers to address these issues. For example, debris-covered glaciers are difficult to distinguish from surrounding terrain using visible imagery...

Read More

Roundup: Volcanoes, Cryoseismology and Hydropower

Posted by on Dec 5, 2016 in All Posts, Featured Posts, Interviews, News, Roundup | 0 comments

Roundup: Volcanoes, Cryoseismology and Hydropower

Spread the News:ShareRoundup: Kamchatka, Cryoseismology and Bhutan   Activity in Kamchatka’s Glacier-Covered Volcanoes From KVERT: “The Kamchatka Volcanic Eruption Response Team (KVERT) monitors 30 active volcanoes of Kamchatka and six active volcanoes of Northern Kuriles [both in Russia]. Not all of these volcanoes had eruptions in historical time; however, they are potentially active and therefore are of concern to aviation... In Russia, KVERT, on behalf of the Institute of Volcanology and Seismology (IVS), is responsible for providing information on volcanic activity to international air navigation services for the airspace users.” Many of these volcanoes are glacier-covered, and the interactions between lava and ice can create dramatic ice plumes. Sheveluch Volcano currently has an orange aviation alert, with possible “ash explosions up to 26,200-32,800 ft (8-10 km) above sea level… Ongoing activity could affect international and low-flying aircraft.” Read more about the volcanic warnings here, or check out GlacierHub’s collection of photos from the eruption of Klyuchevskoy.   New Insights Into Seismic Activity Caused by Glaciers  In Reviews of Geophysics: “New insights into basal motion, iceberg calving, glacier, iceberg, and sea ice dynamics, and precursory signs of unstable glaciers and ice structural changes are being discovered with seismological techniques. These observations offer an invaluable foundation for understanding ongoing environmental changes and for future monitoring of ice bodies worldwide… In this review we discuss seismic sources in the cryosphere as well as research challenges for the near future.” Read more about the study here.   The Future of Hydropower in Bhutan From TheThirdPole.net: An interview with Chhewang Rinzin, the managing director of Bhutan’s Druk Green Power Corporation, reveals the multifaceted challenges involved in hydropower projects in Bhutan. These challenges include the effect of climate change on glaciers: “The glaciers are melting and the snowfall is much less than it was in the 1960s and 70s. That battery that you have in a form of snow and glaciers up there – which melts in the spring months and brings in additional water – will slowly go away…But the good news is that with climate change, many say that the monsoons will be wetter and there will be more discharge,” said Rinzin. Check out the full interview with Chhewang Rinzin here. For more about hydropower in Bhutan, see GlacierHub’s earlier story. Spread the...

Read More

A Visit to a Glacier Goddess

Posted by on Nov 20, 2015 in All Posts, Art/Culture, Communities, Experiences, Featured Posts | 0 comments

A Visit to a Glacier Goddess

Spread the News:ShareDuring my recent visit to Bhutan, a shopkeeper in a mountain village mentioned to me that there was a temple located high up in a valley on Mount Jomolhari.  It contained an image of the local deity, he added, the goddess of the mountain.  These facts, mentioned quite casually, stirred my curiosity and made me eager to visit it.  What would the image of the deity look like, and what could I learn from it about what the local people, most of them yak-herders, thought about the mountain and its shrinking glaciers? The shopkeeper was uncertain of the distance to the temple and of its elevation, but he did recall that there were several large streams to cross. Several members of my party wanted to remain at lower elevations to advance their research on trees, but the horseman, Rinzin Dorji, was interested in coming—a fortunate addition, since he was familiar with the region. Kinga Thinley, one of the foresters working with us, wanted to join us as well. His English was better than Rinzin’s, so he could serve as an interpreter. The shopkeeper encouraged us to go, but warned us that we might not be able to enter the temple. It was usually locked, except for festivals, or when an itinerant monk might happen to stop by. Jomolhari Temple did have a caretaker who keeps a key; however, since the caretaker was a yak-herder who often traveled to high pastures or to market towns, we might not be able to find him. We set off up the main valley early the next morning. After an hour or so, we came to a chorten, surrounded by prayer-flags, which marked a spot that had been visited by Guru Rinpoche, the Tibetan master who introduced Buddhism into Bhutan in the 8th century. Rinzin stopped to light a butter-lamp in a niche in the chorten, and then we began our ascent of the valley’s flank. A series of switchbacks led us up through pastures and forests to a flat meadow with several large boulders. Rinzin showed us a number of cracks and bumps in the boulders which were traces of events long in the past. Guru Rinpoche’s carrying basket and his horse’s saddle were visible. He also pointed out a flat space on one boulder, and a set of closely-spaced parallel lines. Thanks to Kinga’s help as an interpreter, I could understand the story that Rinzin was telling. The flat space was the impression that had been made by a sacred book, which had flown to this area from Dagala far to the southeast. The parallel lines were marks made by flutes that had rested there; these were the flutes that had been played by the monks as they walked from the temple—the same one that we were going to visit—to receive this book and carry it back to the temple. Rinzin indicated a low spot in the hills ahead of us, and said that there was another one just beyond it. They had contained lakes which had flown to Dagala. These lakes were the gifts of Jomolhari to another spirit, also named Jomo, and the book was a kind of return gift. There is a third Jomo in eastern Bhutan, near Sakteng in the province of Trashigang; Rinzin did not know much about her, though the caretaker would be able to tell us more. He did know that the three Jomos were sisters, and that Jomolhari was the oldest. We continued along the trail, ascended a small rise, and entered a high valley that led directly to Jomolhari. The mountain’s immense mass...

Read More