Featured Posts

Earthquake in Greenland Triggers Fatal Landslide-Induced Tsunami

Posted by on Jun 28, 2017 in All Posts, Featured Posts, News | 0 comments

Earthquake in Greenland Triggers Fatal Landslide-Induced Tsunami

Spread the News:ShareThis post, written by David Jacobson, appeared earlier this month on the website Temblor. It has been lightly edited. A M=4.1 earthquake which took place on June 17 on Greenland’s western coast caused a massive landslide, triggering a tsunami that inundated small settlements on the coast. At this stage, four people are feared to have died, nine others were injured, and 11 buildings were destroyed. In the hardest hit village, Nuugaatsiag, which is home to around 100 people, 40 people were evacuated to Nuugaatsiag, the eleventh-largest town in Greenland. While this earthquake appears to be tectonic in nature, according to Meredith Nettles of the Lamont-Doherty Earth Observatory at Columbia University, Greenland also experiences what are known as glacial earthquakes. Glacial earthquakes are a relatively new class of seismic event, often linked to the calving of large outlet glaciers. While this type of event has also been observed in Antarctica, the majority have been recorded off the coast of Greenland, and show a strong seasonality, with most of them occurring late in the summer. Because glacial earthquakes have a different mechanism than normal earthquakes, standard earthquake monitoring techniques cannot be used to detect them, which explains why they were not known about until 2003. Additionally, while a tectonic M=5 quake typically lasts about 2 seconds, a comparable M=5 glacial earthquake can emit long-period (greater than 30 seconds) seismic waves. It is because of this that they have a separate classification. In order for a glacial earthquake to occur, a large-scale calving event has to take place. When a glacier calves, there is a sudden change in glacial mass and motion. While a glacier is technically a river of ice, meaning it slowly flows downhill, when a large calving event takes place, there is a brief period when horizontal motion reverses. Couple this with a downward deflection of the glacier’s terminus, which causes an upward force on earth’s surface, and you have the recipe for a glacial earthquake. These earthquakes tend to be M=4.6-5.1. Despite the fact that this tectonic quake was by no means large, it was big enough to trigger a massive landslide into the ocean, and the ensuing displacement of water was enough to form a tsunami that devastated parts of Nuugaatsiag. Nettles noted, “The M=4.1 earthquake does not explain the large, long-period (slow) seismic signal detected by seismometers around the globe. The long-period signal appears to be due to a landslide, and the time of the long-period signal is later than the time of the high-frequency (earthquake) signal. It is possible the earthquake triggered the landslide.” What this means is that both the earthquake and landslide generated seismic signals, but that the earthquake signal appeared first, suggesting the quake triggered the slide. The video below shows a view of the landslide, while the photos below show the landslide and the devastation caused by the tsunami.       A helicopter video of the landslide that triggered the deadly tsunami in Greenland:         Spread the...

Read More

Scaling Quelccaya: Depicting Climate Change Through Art

Posted by on Jun 27, 2017 in All Posts, Art/Culture, Featured Posts | 0 comments

Scaling Quelccaya: Depicting Climate Change Through Art

Spread the News:ShareThe Quelccaya Ice Cap, located in the Peruvian Andes, is the world’s largest tropical glaciated area. In an effort to conceptualize the scale of the glacier’s retreat, Meredith Leich, M.F.A. in film, video, media, and new animation at SAIC, and Andrew Malone, Ph.D. in glaciology and climatology at the University of Chicago, collaborated on a project in 2016 called “Scaling Quelccaya.” The project combines 30 years of satellite imagery of the Peruvian ice cap, 3-D animation, and gaming software to create a virtual representation of the glacier’s retreat using the city of Chicago as a “metering stick,” allowing viewers to develop a more elaborate sense of Quelccaya’s scale. The 3-D animation enables viewers to visualize the Peruvian ice cap and virtually “fly” through the Andes by converting satellite data into a Digital Elevation Model, then using a gaming software called Unity to transform it into a 3-D model. “Scaling Quelccaya” was initiated by Leich, who acknowledged having only an incomplete idea about the impact of climate change at the start of the project. Malone’s research of the Quelccaya ice cap was then transformed into the 3-D animation in order to allow the audience to visualize the melting effects on the ice cap, a more effective tool than graphs or charts alone. Malone used satellite data from the Landsat program, a series of satellites that has provided the longest temporal record of data of Earth’s surface, including the Quelccaya Ice Cap, to provide an accurate representation of the amount of ice loss over this period. This project allowed Leich and Malone to visually portray the consequences of climate change in ways that viewers could understand intuitively, contrasting the disappearance of the glaciers to a hypothetical disappearance of the Chicago area. In an interview with GlacierHub, Meredith Leich explains the inspiration behind the project’s comparison of Quelccaya with Chicago: “Instead of solely describing numerically how much Qori Kallis (one of Quelccaya’s glacial outlets) had retreated, we could show visually that the glacier had retreated the distance between the Willis Tower and the Tribune Tower in Chicago – a distance that an urban resident would understand viscerally, with embodied memories of walking the city streets.” The name of the project plays on the word scale, since it shows the scale of glacier retreat and allows viewers to scale the summit of a virtual glacier.    To get a better understanding of Quelccaya’s volume of snow, Leich and Malone began generating DEMs – Digital Elevation Models – from the satellite data obtained from Shuttle Radar Topography Mission (SRTM). The DEM calculated the height of every point on the glacier’s surface. The software then selected a shade of black, gray or white to represent each height. The uppermost height was registered as white, the lowest height as black, and every height in between mathematically assigned a corresponding shade of gray. Next, they generated a 3-D model with a gaming software called Unity by importing height maps as “terrains.” The terrain function read a combination of the DEM to create the virtual 3-D model based on the topography of the land. Finally, they used Maya, an animation and modeling program, to apply texture to the surface of the terrain, add light, and be able to move around the glacier to see it from all angles. Once the model was finished, Leich and Malone removed the equivalent of ice in Quelccaya and placed it on a model of Chicago as snow, with different variations of snow such as fluffy snow, firm snow, ice, and others. New York City (specifically Manhattan) is often chosen as a prime example...

Read More

Roundup: Greenland Earthquake, Mural Restoration, and Phytoplankton

Posted by on Jun 26, 2017 in All Posts, Art/Culture, Featured Posts, Roundup, Science | 0 comments

Roundup: Greenland Earthquake, Mural Restoration, and Phytoplankton

Spread the News:ShareGreenland Earthquake Triggers Landslide-Induced Tsunami From Temblor: “Over the weekend, a M=4.1 earthquake on Greenland’s western coast caused a massive landslide, triggering a tsunami that inundated small settlements on the coast. At this stage, four people are feared to have died, nine others were injured, and 11 buildings were destroyed. Glacial earthquakes are a relatively new class of seismic event, and are often linked to the calving of large outlet glaciers.” You can read more about the glacial earthquake in Greenland here. Mural Restoration at Glacier National Park From Hockaday Museum of Art: “Early visitors to Glacier Park Lodge were treated to architectural and visual grandeur inside the building that was almost as expansive as the surrounding landscape. The scenic panels covered hundreds of square feet and appeared in a 1939 Glacier Park Lodge inventory as ’51 watercolor panels.’ In September of 2012, Leanne Brown donated the murals to the Hockaday in memory of her grandparents, Leona and Robert Brown, who had saved and restored 15 of the murals.” Learn more about the restored murals here. Phytoplankton Growth in Alaska From AGU Publications: “Primary productivity in the Gulf of Alaska is limited by availability of the micronutrient iron (Fe). Identifying and quantifying the Fe sources to this region are therefore of fundamental ecological importance. Understanding the fundamental processes driving nutrient fluxes to surface waters in this region is made even more important by the fact that climate and global change are impacting many key processes, which could perturb the marine ecosystem in ways we do not understand.” Read more about phytoplankton growth in the Gulf of Alaska here.   Spread the...

Read More

Photo Friday: Northwest China’s #1 Glacier

Posted by on Jun 23, 2017 in All Posts, Featured Posts, Images | 0 comments

Photo Friday: Northwest China’s #1 Glacier

Spread the News:ShareIn February 2016, the government in China’s Xinjiang Uyghur Autonomous Region announced that tourists would no longer be permitted to stand atop its retreating glaciers. According to the memo, tourism was a direct cause of glacial retreat. China is home to 46,377 glaciers, and the government has a particular reason to be concerned with the state of its glaciers in this region: comprising 1/6 of China’s land mass, Xinjiang is home to 18,311 of them. The Tian Shan Glacier No. 1, which has existed for a reported 4.8 million years, is expected to disappear within 50 years. Though the glacier is only accessible via roads that would give Indiana Jones pause, it remains a popular tourist destination. Josh Summers has been living in Xinjiang since 2006 and runs a well-regarded travel blog that provides hard-to-find information for foreign tourists interested in visiting the far-away region. Today, we travel to Xinjiang to see this glacier before it disappears.       Watch Josh’s drive from Urumqi to Tian Shan Glacier No. 1 via ‘Highway’ 216:       Spread the...

Read More

Water Stress in the Naryn River Basin

Posted by on Jun 22, 2017 in All Posts, Featured Posts, Policy and Economics, Science | 0 comments

Water Stress in the Naryn River Basin

Spread the News:ShareAround the world, meltwater from snow and glaciers has provided surrounding communities with water for irrigation and hydropower, but climate change is altering the timing and volume of the annual water flow cycle. This issue is pressing in eastern Kyrgyzstan, where the glaciers and snowpack of the Tien Shan Mountains form the headwaters of the Naryn River, which flows westward across Kyrgyzstan before crossing the border into Uzbekistan. A recent study in the journal Water by Alice F. Hill et al. analyzed water chemistry from the Naryn River Basin to find changes in the contribution of mountain headwaters to river discharges that flow downstream to agricultural areas. Agriculture accounts for 29 percent of the country’s GDP (2010 figures) and more than half of its labor force. The study’s aim was to capture key hydrologic transitions over the diverse domain by using a hydro-chemical mixing model, known as End Member Mixing Analysis, to distill multi-variate water chemistry data from samples, in order to quantify water contributions from river discharge to agricultural areas serving larger populations. By using a remotely sensed product to quantify the rain, seasonal snow, and glacial melt inputs, the study found that when glacial ice mass decreases, it contributes less to river water supplies. Government Policies and Water Management These trans-boundary water sources have been a topic of relations between the Republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan since their independence from the Soviet Union in 1991, with water resource management poorly coordinated between the five republics. Recently, new infrastructure, such as dams and diversions, have been developed, creating problems for neighbors that live downstream. “The Kyrgyzstan government insists increased precipitation and snowmelt are to blame for natural hazards and fatalities. Scientists have yet to determine the cause of such weather anomalies in Southern Tian Shan,” said Ryskeldi Satke, a Kyrgyz journalist, in an interview with GlacierHub. “On the other hand, it was known that climate change worries experts and researchers over its impact on snow melt in the Tian Shan and Pamirs. Subsequently, more ground research and cooperation would be needed to explain weather patterns in the region.” Kyrgyzstan has over 8,000 glaciers, accounting for 4.2 percent of the country’s territory. The consumption of irrigation water for agriculture represents 94 percent of total water use, while only three percent is allocated to households and industries. Livelihoods depend on the river flow from these glaciers, which have been shrinking since the 1930s, according to research. In order to better understand the implication of the infrastructure developments, Hill and her colleagues conducted a survey in both upstream and downstream communities. They asked questions relating to changes in water availability for irrigation, food, and recreation, as well as changes in household activities, estimated income, and income structure over the last 15 years. Community Survey The researchers conducted the survey across a 440 km stretch of the Naryn River to better understand the challenges that the people of the Naryn basin face in obtaining adequate water supplies. All communities reported an overall decrease in water access over the last 15 years. Therefore, some communities installed groundwater wells, mainly in higher portions of the basin. Since the 1960s, the Toktogul district, for example, has been limited by low water availability, scarcity in lands and funds, and a lack of trust in the government. Unfortunately, farmers were not given the proper resources or equipment to build an irrigation or water distribution system, according to the study. There was a lack of government support for farmers who were unable to deal with the harsh conditions on their land, the researchers noted. Therefore, yields began to decrease and the irrigation systems deteriorated. This led the farmers and surrounding neighbors to believe...

Read More

Climate, Economy, Family: Migration in the Bolivian Andes

Posted by on Jun 21, 2017 in All Posts, Communities, Featured Posts | 0 comments

Climate, Economy, Family: Migration in the Bolivian Andes

Spread the News:ShareHigh in the Bolivian Andes, the pace of glacial retreat is accelerating, which may significantly decrease the amount of glacial meltwater available to streams and aquifers critical to farming communities in the region’s river basins. In addition to the long-term threat posed by glacial retreat, these communities are also threatened by economic uncertainty and climatic variability. As a response to livelihood insecurity, many Bolivian farmers choose to migrate, temporarily or permanently, to nearby urban centers. But how exactly are migration decisions understood within these migrant households? In a recent chapter in Global Migration Issues, Regine Brandt and her team interview farmers in two Andean valleys to understand the factors contributing to migration decisions. The research demonstrates that migration has increased in importance as a livelihood strategy and that rural Bolivians consider environmental factors, social ties and economic needs together when making these decisions. To obtain these findings, the team conducted research in the municipality of Palca, a high-altitude rural area where 80 percent of the population lives in extreme poverty. They asked members of migrant farming households in two separate glacier-fed river basins to describe any factors that had influenced temporary or permanent migration decisions. In analyzing their data, the researchers looked to the frequency with which each causal factor was mentioned in each interview. If, for example, climate change was mentioned several times as a factor for a household, but social conflict was only mentioned once, climate change was understood to be of greater importance to that household in making their decision. According to Raoul Kaenzig, one of the article’s co-authors, the impact of glacial retreat on farmers in the Andean highlands is still poorly documented. In the 1980s, Bolivia underwent a severe drought and has since experienced a rise in the frequency of extreme weather events, as well as a shift in rainfall patterns. In response, some peasants changed their agricultural practices, while others began sending individual family members to urban areas. Internal migrants rarely travel beyond their home region and maintain connections to their rural origins, often spending only part of the year in nearby cities, according to the study. In Bolivia, migration is seen as a means of contributing to the greater household economy— an individual may migrate to find work but with the intention of helping to support the family back home. In an interview with GlacierHub, Corinne Valdivia, a professor of agricultural economics at the University of Missouri, explained how the threats posed to farmers in this and surrounding regions have increased in recent years. “The production risks have increased in the region of the North and Central Altiplano of Bolivia, as well as in Southern Peru, with longer periods without rainfall, and short and intense rains,” she said. “Pests and diseases have also increased. These threaten the livelihoods of families who are producing for their consumption and for the market. Migration is a strategy to address this, but in turn means that less labor is available to tackle the stresses posed by the changing climate.” For 60 percent of the regional migrants interviewed in the study, better educational opportunities were the primary driver of their migration decision. Additionally, nearly every respondent pointed to an increasingly unpredictable climate as a factor in their migration. Individuals living near the Illimani glacier, which has become a symbol of climate change in Bolivia, were significantly more likely to emphasize climatic variability, glacier retreat and water problems as factors in their migration than those living near a less iconic symbol of glacial melting, Mururata. The authors attribute this difference to a combination of observable environmental change and discourse. Unsurprisingly, off-farm...

Read More