Featured Posts

Photo Friday: Sperry Glacier

Posted by on Feb 24, 2017 in All Posts, Featured Posts, Images | 0 comments

Photo Friday: Sperry Glacier

Spread the News:ShareSperry Glacier is located 25 miles south of the border between the United States and Canada, in Montana’s Glacier National Park. It is a winter-accumulation glacier, as more snow falls during the winter than is lost during the summer. The moderate-sized glacier can be reached by foot or on horseback, rising to an elevation of around 7,800 feet. The glacier was named for doctor Lyman Beecher Sperry, who in 1894 reasoned that the glacier was the cause of the cloudiness of the water in Avalanche Lake. When Sperry and his party first reached the glacier in 1897, his nephew Albert Sperry had this reaction after viewing the glacier: While standing upon that peak overlooking the terrain above the rim wall, we got the thrill of thrills, for there lay the glacier, shriveled and shrunken from its former size, almost senile, with its back against the mountain walls to the east of it, putting up its last fight for life. It was still what seemed to be a lusty giant, but it was dying, dying, dying, every score of years and as it receded, it was spewing at its mouth the accumulations buried within its bosom for centuries. Today, you can visit Sperry Glacier and walk along the same route that Sperry and his party traveled 120 years ago, although the glacier looks very different today. Join us on this visual tour of the glacier’s past and present. We hope that concerted action on greenhouse gas emissions will assure that this beautiful glacier has a future.                       Spread the...

Read More

New Report Documents Pakistan’s Water Insecurity

Posted by on Feb 23, 2017 in All Posts, Featured Posts, News, Policy and Economics | 0 comments

New Report Documents Pakistan’s Water Insecurity

Spread the News:ShareWater security is a pervasive issue in Pakistan, a largely arid country. The majority of the country receives less than 300mm of rain per year, while a small region in the north receives upwards of 1000 mm per year. The Indus River provides much of the water to the area, but its flow is irregular due to the variable precipitation. Moreover, the river originates partly in Pakistan and partly in India, creating additional political challenges that stem from the decades-long history of tension between the two countries. Last month, the United Nations Development Programme released a Development Advocate Pakistan report that describes the uncertain future of water in Pakistan, which is impacted by changing climate and melting glaciers, as well as political issues with neighboring India. The report’s editors suggest several ways to increase water stability in Pakistan. They advise increasing public awareness because the lack of trust stems in part from incomplete access to data and information. They also recommend high efficiency irrigation systems and updating academic curriculum in the country to include sustainable development. As the report describes, the region of Gilgit-Baltistan in northern Pakistan provides most of the water in the glaciated parts of the country. Altitudes exceed 5000 meters with annual snowfall of approximately 5000 millimeters in the highest regions. This zone is the largest area of perennial glaciers outside the polar regions; nearly one third of the Gilgit-Baltistan area is glaciated. The meltwater of these glaciers contribute a massive volume of freshwater, which forms a significant component of the flow into the Indus River. The variability of river flows as a result of monsoon seasons has led to water crises and conflicts between provinces, as well as neighboring countries. The Indus Water Treaty has allowed for peaceful relations between Pakistan and its neighbor India for the past 40 years. As Justin Rowlatt describes in his BBC report from September 2016, the Indus Water Treaty has survived two wars and numerous military impasses between the two countries. However, the increased water stress in the Indus River basin since the early 1990s has strained the treaty.  Coverage of the UNDP report in Indian and Pakistani newspapers has unsurprisingly varied. A recent article in the Times of India covering the report emphasized Pakistan’s negligence and delays in presenting cases to the Indus Water Treaty. An article in the Hindustan Times reports that, “Pakistan has cleverly employed the IWT to have its cake and eat it too” by receiving the larger amount of water the treaty allots for downstream States, while also using the treaty to sustain conflict with India. The coverage of the issue by Pakistani newspapers is sparser. In one editorial published in Pakistan Today, the author calls the UNDP report a “wake-up call” and urges cooperation between Pakistan and India to resolve the dispute. The treaty itself fails to address two important issues. The first is that it does not provide for a division of water during shortages in the dry years between India and Pakistan. The second is that it does not discuss the cumulative impact of reservoirs on the flows of the Chenab River, a major tributary of the Indus, into Pakistan. On a fundamental level, the government of Pakistan does not think the Indus Water Treaty is effective because its people are not satisfied with the amount of water received, but the government of India does not wish to amend the treaty or address water conflict between the countries in other contexts. The treaty allows India to create reservoirs on nearby rivers to store water for hydropower and flood shortages. This provision has created conflicts between...

Read More

Rock Glaciers Help Protect Species in a Warmer Climate

Posted by on Feb 22, 2017 in Adaptation, Featured Posts, Images, Interviews, Science | 0 comments

Rock Glaciers Help Protect Species in a Warmer Climate

Spread the News:ShareIn a recent study by Duccio Tampucci et al., rock glaciers in the Italian Alps have been shown to host a wide variety of flora and fauna, supporting plant and arthropod species during temporary decadal periods of climatic warming. Certain species that thrive in cold conditions have been prone to high environmental stress during warm climate stages in the past, but given the results of Tampucci’s research, it is now clear that these species may be able to survive in periglacial settings on the edge of existing glaciers. Active rock glaciers, commonly found on the border of larger glaciers and ice sheets, are comprised of coarse debris with intermixed ice or an ice-core. The study has valuable implications on how organisms may respond to changes in temperature, offering a possible explanation for species’ resiliency. Jonathan Anderson, a retired Glacier National Park ranger, spoke to GlacierHub about the importance of periglacial realms in providing a habitat for animals displaced by modern climate change. “In the years spent in and around the park, it’s clear that more and more animals are feeling the impact of climate change and global warming,” he said. “The areas surrounding the larger glaciers are becoming even more important than before and are now home to many of the species that lived on the receded glacier.” In their study, Tampucci and team analyzed abiotic dimensions of active rock glaciers such as ground surface temperature, humidity and soil chemistry, as well as biotic factors related to the species abundance of plants and arthropods. This data was then compared to surrounding iceless regions characterized by large scree slopes (small loose stones covering mountain slopes) as an experimental control for the glaciated landforms of interest. Comparisons between these active scree slopes and rock glaciers revealed similar soil geochemistry, yet colder ground surface temperatures existed on the rocky glaciers. Thus, more cold-adapted species existed on rock glaciers. The distribution of plant and arthropod species was found to be highly variable, dependent upon soil pH and the severity of mountain slope-instability. This variability is because the fraction of coarse debris and quantity of organic matter changes with the landform’s activity, or amount of mass wasting occurring downslope. The study notes that the heterogeneity in landforms in mountainous regions augments the overall biodiversity of the region. Anderson affirmed this idea, noting, “The difference in habitats between glaciated terrain and the surrounding, more vegetated regions is crucial for allowing a wide range of animals to coexist.” This variety of landforms contributes to a wide variety of microclimates in which ecologically diverse organisms can reside in close proximity. Cold-adapted species are likely the first to be affected by region-wide seasonal warming. As temperatures increase, cold-weather habitats are liable to reduce in size and shift to higher altitudinal belts, resulting in species reduction and possible extirpation. Tampucci et al.’s study affirmed the notion that active rock glaciers serve as refugia for cold-adapted species due to the landscape’s microclimate features. The local periglacial environment in the Italian Ortles-Cevedale Massif, for example, was shown to be decoupled from greater regional climate, with sufficient thermal inertia (resistance to temperature change) to support cold-adapted species on a decadal timescale. Despite the conclusive findings that largely affirm previous assumptions about biodiversity in active rock glaciers, the authors carefully point out that the glacier’s ability to serve as refugia for certain species depends entirely on the length of the warm-climate stage, which can potentially last for millennia. Additionally, the macroclimatic context in which the glaciers reside is important and can influence the landform’s thermal inertia, affecting the temporal scale at...

Read More

Research Shows How Climate Change Drives Glacier Retreat

Posted by on Feb 21, 2017 in All Posts, Featured Posts, Science | 0 comments

Research Shows How Climate Change Drives Glacier Retreat

Spread the News:ShareShrinking glaciers are oft-cited examples of the effects of anthropogenic climate change, providing dramatic imagery in different parts of the world. However, this has mostly been based on global aggregates of glacier extent. Differing opinions also exist about the best way to measure glacial change all over the world.  A recent study by Roe et al., published in Nature Geoscience, confirms that climate change has contributed to the shortening of numerous glaciers around the world, but the study is not immune to controversy surroundings the methods used. Using a combination of meteorological data and observations of glacier length, Roe et al. studied the influence of climate on 37 glaciers between 1880 and 2010. The glaciers were selected based on the continuity of length observations and the need for a wide geographical distribution. Glacier mass-balance records are a more direct measure of the effect of climate than glacier length as they measure the difference between the accumulation and ablation (sublimation or melting) of glacier ice. However, most mass-balance records do not extend for more than two decades, contributing to the previous lack of confirmation of the effect of climate change on individual glaciers around the world. The use of observations of glacier length helped to overcome this obstacle, but challenges were still encountered in obtaining long, continuous data sets, particularly for regions such as Asia and South America. In conversation with GlacierHub, Roe shared that many factors can affect the availability of continuous data sets. “For example, the collapse of the Soviet Union led to many glacier observation programs being abandoned,” he stated. An additional challenge arose from the variation in conditions experienced by each glacier. “Every glacier is a unique product of its local climate and landscape,” Roe shared, citing the example of maritime glaciers, which typically experience a large degree of wintertime accumulation variability. “This can mask the signal of a warming that, so far, has mainly impacted the summertime mass balance,” he added. Nevertheless, Roe et al. found that there was at least a 99% chance that a change in climate was needed to account for the retreat of 21 of the glaciers studied. “Even for the least statistically significant (Rabots Glacier in Sweden), there was still an 89% chance that its retreat required a climate change,” Roe said. As glaciers tend to have decadal responses to changes in climate, their retreat since 1880 is likely to be a result of twentieth-century temperature trends. They also act as amplifiers of local climate trends, providing strong signal-to-noise ratios that serve as strong evidence for the effects of anthropogenic climate change. For example, one of the glaciers included in the study, Hintereisferner in the Austrian Alps, retreated 2,800m since 1880, with a standard deviation (a measure of the deviation of values from the mean) of 130m. This value is small compared to the amount of retreat, providing a strong signal of change. “We hope that these results will lead to a stronger scientific consensus about the cause of glacier retreat. The last round of the Intergovernmental Panel on Climate Change was quite timid, concluding only that it was ‘likely’ that a ‘substantial’ part of glacier retreat was due to human-caused climate change,” Roe added. IPCC nomenclature would make it “very likely” (≥90%) that all but one of the glaciers in this study have retreated because of climate change, allowing for stronger conclusions to be drawn. Excitement about the results of this study was shared by Joerg Schaefer, professor at the Lamont-Doherty Earth Observatory: “Under Roe’s lead, the really smart glacier people find ways to explain this strange...

Read More

Roundup: Snow Bacteria, Sting, and Glacier Awareness

Posted by on Feb 20, 2017 in All Posts, Featured Posts, News, Roundup, Science | 0 comments

Roundup: Snow Bacteria, Sting, and Glacier Awareness

Spread the News:ShareRoundup: Bacteria, Sting, and Glacier Awareness   Snow Bacteria in the Tibetan Plateau From INFONA: “Snow bacterial abundance and diversity at the Guoqu Glacier and the East Rongbuk Glacier located in the central and southern Tibetan Plateau were investigated using a 16S rRNA gene clone library and flow cytometry approach. Bacterial abundance was observed to show seasonal variation, with different patterns, at the two glaciers. High bacterial abundance occurs during the monsoon season at the East Rongbuk Glacier and during the non-monsoon season at the Guoqu Glacier. Seasonal variation in abundance is caused by the snow bacterial growth at the East Rongbuk Glacier, but by bacterial input from the dust at the Guoqu Glacier. Under the influence of various atmospheric circulations and temperature, bacterial diversity varies seasonally at different degrees.” Read more about it here.     New Animated Music Video – Sting’s “One Fine Day” From AboutVideo: “Some celebrities do not grow old, not only outwardly but also in the creative plan. In November 2016, the British singer Sting has pleased his fans with a new studio album ’57th & 9th,’ his 12th. On sounding, the album refers to the days Sting was part of the band The Police. The success of the new album has fixed the singer in the top twenty of the UK Albums Charts… In the song ‘One Fine Day,’ Sting sings about protecting the environment. He calls for common sense with regard to nature and its gifts. The musician appears in the video as a silhouette on crumpled paper. The beautiful images on paper give a sense of danger. Sting shows how the glaciers are melting and the politicians are endlessly arguing with each other, leading to the destruction of the planet.” Watch the video here.     Raising Awareness About Glacier Retreat From Pamir Times: “A group of mountaineers and a researcher from Shimshal Valley – Hunza, reached Askoli, a remote mountain village in Skardu, after walking across the Braldu Pass. They are on a a mission to raise awareness about saving glaciers from depleting… The expedition members surveyed Mulungdi glacier and Khurdupin glacier before embarking on their journey to Askoli on January 6… Pakistan is home to world’s largest ice glaciers out of the polar region. Spread over an area of 16933 square kilometers, there are over 5000 glaciers in the Gilgit-Baltistan and Chitral regions of Pakistan, including the famous Siachin Glacier, Biafo Glacier, Khoordhopin Glacier, Batura Glacier, Braldu Glacier, Snow lake and many more. These glaciers are the major source of water feeding the major rivers in Pakistan.” Learn more here.   Spread the...

Read More

Photo Friday: Mt. Baker Glaciers

Posted by on Feb 17, 2017 in All Posts, Featured Posts, Images | 0 comments

Photo Friday: Mt. Baker Glaciers

Spread the News:ShareWashington is the second most-glaciated state in the United States, after Alaska. Mount Baker, located in the North Cascade Range, is an active stratovolcano that contains about 49 square kilometers of glaciers. The region is a popular skiing destination and the surrounding Skagit Valley provides a beautiful location from which to photograph glaciers. Chris Pribbernow is an outdoor and sports photographer based in Washington. He recently captured the Skagit Valley and Mount Baker glaciers. Take a look at some of the photographs from his visits or see his other images from Washington State @PribbernowPhotography.           Spread the...

Read More