Adaptation

Ice-Spy: Declassified Satellite Images Measure Glacial Loss

Posted by on Jan 5, 2017 in Adaptation, All Posts, Featured Posts, Policy and Economics, Science | 0 comments

Ice-Spy: Declassified Satellite Images Measure Glacial Loss

Spread the News:ShareSince the 1960s, images from spy satellites have been replacing the use of planes for reconnaissance intelligence missions. Making the transition from planes to satellites was prompted by an infamous U-2 incident during the Cold War when U.S. pilot Francis Gary Powers’ U-2 spy plane was shot down in Soviet air space. Five days later, after considerable embarrassment and controversy, President Eisenhower approved the first launch of an intelligence satellite, part of a new scientific electronic intelligence system termed ELINT. Today, declassified images from satellites have resurfaced to support scientific research on glaciers and climate change. Scientists from Columbia University and the University of Utah created 3-D images of glaciers across the Himalayas, and Bhutan specifically, by using satellite imagery to track glacial retreat related to climate change. Joshua Maurer et al. published the results of their Bhutan study in The Cryosphere to help fill in the gaps of “a severe lack of field data” for Eastern Himalayan glaciers. Being able to understand and quantify ice loss trends in isolated mountain areas like Bhutan requires physical measurements that are currently not available due to complex politics and rugged terrain. Luckily, the scientists found an alternative route to reach their measurement goals by comparing declassified spy satellite images from 1974 with images taken in 2006 using the ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer, a spaceborne imaging instrument aboard NASA’s earth-observing Terra satellite. Bhutan has hundreds of glaciers and glacial lakes. Physical data collection can be a daunting process in such a region considering the vast quantity of glaciers in combination with freezing weather conditions and high winds. The lead researcher of the Bhutan study, Joshua Maurer from Columbia University, experienced firsthand the logistical challenges associated with directly measuring changes in glacial ice density when conducting research on glacial change in the remote and high-altitude regions of Bhutan. Inspired by this difficult experience, Maurer collaborated with other scientists from the University of Utah to find alternative methods for quantifying trends in glacial ice density. Maurer and the team of researchers devised a strategy to use declassified satellite images to collect data by a process of photogrammetry, the use of photographs to survey and measure distances. More than 800,000 images from the CORONA Satellite program, taken in the 1970s and 1980s, have been sent to the U.S. Geological Survey from the Central Intelligence Agency (CIA), and made available to the public. Several advanced mathematical tools are necessary for making measurements from raw image files. For this particular study, the team used the declassified photos from the 1970s to track changes in glacial ice coverage over time when compared to more recent images from the Hexagon Imagery Program database taken by the Swiss-based Leica Geosystems’ airborne sensors in 2006. Once a timeline was created from the pictures, measurements were made using NASA’s space tool ASTER. This method, Maurer argues, is the solution for measuring massive amounts of hard-to-access data. But making precise measurements integrating several sets of images from different periods of time is no simple task. Pixel blocks, minute areas of illuminations from which images are composed, were processed to correspond with regions designated on the film. The blocks of pixels were then selected to maximize coverage of glaciers and avoid regions with cloud cover. Computer-generated algorithms transform these blocks of image into measurements using automated point detectors and descriptors. Images from the declassified satellite database may suffer from a lack of clarity, so it was also important for the researchers to address these issues. For example, debris-covered glaciers are difficult to distinguish from surrounding terrain using visible imagery...

Read More

How Arctic and Subarctic Peoples Perceive Climate Change

Posted by on Dec 29, 2016 in Adaptation, All Posts, Art/Culture, Communities, Featured Posts | 0 comments

How Arctic and Subarctic Peoples Perceive Climate Change

Spread the News:ShareIndigenous Arctic and Subarctic communities face social and environmental challenges that could impact their traditional knowledge systems and livelihoods, decreasing their adaptive capacity to climate change. In a paper featured in Ecology and Society, Nicole Herman-Mercer et al. discuss recent research that took place during an interdisciplinary project called Strategic Needs of Water on the Yukon (SNOWY). The project focused on how indigenous communities in the Lower Yukon River Basin and the Yukon-Kuskokwim Delta regions of Alaska interpret climate change. Global warming has had a significant impact on these regions, with mean annual temperatures increasing 1.7°C over the past 60 years, according to the study. Rising temperatures are predicted to further change water chemistry, alter permafrost distribution, and increase glacier melt. These changes have had a massive impact on the residents living in the Yukon River Basin and their indigenous knowledge, as well as on the basin itself. For example, the basin’s largest glacier, the Llewellyn Glacier, has had a major contribution to increased runoff.  With environments changing at an ever-rapid pace around the world, more studies have begun to focus on indigenous knowledge and climate change vulnerability. Scientists believe it is important to understand indigenous culture because indigenous knowledge informs perceptions of environmental change and impacts how communities interpret and respond to risk. The focus of previous studies in the Arctic and Subarctic had been on older generations in the community, whose observations help shape historical baseline records of weather and climate. These records are frequently missing or incomplete. However, as Herman-Mercer et al. explain, the role of younger generations in indigenous Yukon communities is often overlooked, despite younger people driving community adaptation efforts in response to climate change. Additionally, Kusilvak County, Alaska, where Herman-Mercer et al. focused their study, has a median age of 21.9 years, which makes it the youngest county in the United States. During the project, Herman-Mercer et al. studied four villages with populations under 1,000 people. These villages are home to the native Alaska communities of the Yup’ik and Cup’ik peoples, named for the two main dialects of the Yup’ik language. These indigenous communities are traditionally subsistence-based, with the availability of game and fish, such as moose, salmon, and seals, determining the location of seasonal camps and villages. Herman-Mercer et al. interviewed residents to better understand the communities’ observations of climate change and relationship with the environment. For example, the Yup’ik and Cup’ik people traditionally believe in a reciprocal relationship between humans and the environment, which influences how they view natural disasters and climate change. Rather than seeing these events as naturally occurring, the communities believe that environmental events are punishment for improper human behavior. As a result, the Yup’ik and Cup’ik people have cautionary tales of past famines and poor harvest seasons caused by immoral behavior. These tales also contain information on how to survive hardships using specific codes of conduct. Herman-Mercer et al. relied on three methods to obtain interview participants for the study. First, the researchers had local partners and facilitators recruit members of the communities who were seen as experts. Then a community dinner was held in order to introduce the research team and SNOWY to the Yup’ik and Cup’ik people. Lastly, the researchers used a “snowball” approach in which the team encouraged participants to recommend other people for the study. Nicole Herman-Mercer explained to GlacierHub that all but two of the interviews were conducted in English. For the two remaining interviews, a translator was used. In order to avoid influencing answers, the researchers refrained from using the phrase “climate change” when speaking with the Yup’ik and...

Read More

Mapping Landslides in the Himalayas

Posted by on Dec 8, 2016 in Adaptation, All Posts, Featured Posts, News, Science | 0 comments

Mapping Landslides in the Himalayas

Spread the News:ShareUttarakhand Himalaya in northwest India is a rural, mountain region that shares borders with Nepal and Tibet. Often referred to as “The Land of Gods” for its physical grandeur, Uttarakhand is surrounded by some of the world’s highest peaks and glaciers. However, such beauty comes at a price. The Uttarakhand area is prone to natural and glacier-related disasters, often exacerbated by the region’s topography and climate patterns. Landslides, triggered by heavy rainfall and events called glacial lake outburst floods (GLOFs), expose the high mountain communities to infrastructure, life and community losses. A recent article by Naresh Rana Poonam et al. in Geomorphology measured and mapped susceptibility in Uttarakhand to help create a template that can be applied to locations facing similar climate-related landslides. To conduct their research, Poonam et al. relied on Landslide Susceptibility Zonation (LSZ) mapping in order to deepen understanding and response in Uttarakhand to local hazards in a manner that can also be replicated elsewhere. Landslide Susceptibility Zonation (LSZ) is a type of mapping system that organizes different variables like geological, geomorphic, meteorological and man-made factors as high-risk based on the chances of slope failure. A slope failure occurs whenever a mountain slope collapses due to gravitational stresses, often triggering a destructive local landslide. Mapping these vulnerabilities is critical to understanding the dynamics and potential force of future landslides in the Himalayas and elsewhere. Many of Uttarakhand’s peaks have year-round snowpack with glaciers and glacial lakes that can be disturbed by shifting rainfall patterns and changes in the onset of monsoon season. These disruptions can cause a destabilization deep within the ground, causing the initial movement needed to produce a landslide. Additionally, Uttarakhand’s proximity to the Indian Plate, a large tectonic plate where movement occurs along the boundaries, makes it especially vulnerable to frequent earthquakes. According to the United States Geological Survey, the last earthquake in Uttarakhand occurred on December 1, 2016, with a 5.2 magnitude. The energy released during an earthquake of that magnitude has the potential to trigger multiple, large-scale landslides. Given the high-altitude location of Uttarakhand, earthquakes can also cause glacial lake outburst floods (GLOFs), a type of flood that occurs when the terminal moraine dam located at the maximum edge of a glacier collapses, releasing a large volume of water. These events can be especially destructive to rural mountain communities that are hard to access, making recovery efforts challenging and untimely. Additionally, these villages are often settled in areas where landslides naturally funnel. Preparing mountain communities to understand the risks they face is critical to minimizing damage associated with natural disasters. As a recent article in GlacierHub points out, “Educating and adapting ensures resilience to risks associated not only with glacial outburst flood risks, but also other risks associated with changing climates.” In an attempt to lower the risk of a landslide disaster triggered by a glacial lake outburst flood or rainfall event, Poonam et al. looked at ways to increase accuracy of floodplain mapping. The hope is to help increase the resiliency of communities by encouraging smart expansion with higher predictability of slide prone areas. LSZ mapping is created using the Weights of Evidence method, a statistical procedure for calculating risk assessment using training data, like an established inventory of previous landslides. This statistical approach allows for information retrieved from a geographic information system (GIS) and remotely sensed data to be integrated regionally. LSV maps can also be derived from a knowledge-driven method that involves more human interpretation; however, this method is based on expert evaluations of a location. According to the article, the statistical approach is used more...

Read More

Iceberg Killing Fields Threaten Carbon Cycling

Posted by on Nov 24, 2016 in Adaptation, All Posts, Featured Posts, Science | 0 comments

Iceberg Killing Fields Threaten Carbon Cycling

Spread the News:ShareThe vast, unpopulated landscape of Ryder Bay, West Antarctica gives the impression of complete isolation. However, despite its barren, cold exterior, Antarctica plays an important role in regulating the Earth’s climate system. Located along the southeast coast of Adelaide Island, Ryder Bay is helping mitigate impacts of climate change by removing greenhouse gases from the atmosphere to the ocean, where these gases can remain for centuries. This repurposing is being done by benthos, microorganisms like phytoplankton that bloom during summer months and provide critical food supplies that maintain the marine ecosystem in Ryder Bay. Quietly residing on the floor of the Southern Ocean, benthos are encountering increased risks due to a changing climate. While the potential carbon recycling capacity of local marine ecosystems remains significant, the collapsing glaciers and ice shelves in Ryder Bay may threaten this productivity, according to an article in the journal of Global Change Biology. The carbon recycling process in the marine ecosystems is one of the strongest mechanisms helping to reduce the impacts associated with historic carbon emissions. Located along the continental shelf, benthos absorb carbon through photosynthesis; when these organisms die and fall to the ocean floor, this carbon is then stored in sediments. Undisturbed, the ocean can help thwart warming due to an enhanced greenhouse effect by removing carbon from the atmosphere and storing it in the ocean. David Barnes, a Marine Benthic Ecologist with the British Antarctic Survey and an author of the article,  pointed out to GlacierHub, “Trends in carbon accumulation and immobilization, which occur on the seabed, could be considered most important as these involve long-term carbon storage. [These trends] are perhaps the largest negative feedback on climate change.” However, because of shifting land dynamics, the increased frequency of iceberg creation is having a direct impact on the ability of the marine ecosystems to recycle carbon. As the Earth continues to warm, ice sheets and glaciers in Antarctica advance and become thinner, causing cracks and crevasses to form. These fissures, in turn, lead to unpredictable, large-scale breaks which create icebergs that discharge into the ocean. At the time of detachment, ice formations hit the ocean floor, obliterating the marine ecosystems below. Icebergs can continue to impact the benthos as they travel on the ocean. Barnes described this problem to GlacierHub:  “At places like Ryder Bay, it would be very difficult to provide forecasting, because it is very frequent and a bit chaotic. The direction an iceberg travels depends on its shape, how deep its keel is, wind, and current speed. A smaller iceberg with a vertically flat side above water will easily catch wind like a sail, so if the wind is strong it will mainly follow wind direction. Conversely, a bigger iceberg with a deep vertical flat side might more easily catch current.” According to NOAA, these icebergs— typically rising 5 meters above the sea surface and covering 500 square meters in area— are large enough to inflict significant destruction. Dubbed “iceberg killing fields,” these places of impact can cause extensive disruption to the beneficial marine ecosystems along the ocean floor. David Barnes works with the British Antarctic Survey to study the iceberg killing fields and measure the impact of iceberg-seabed collisions on marine ecosystems. The British Antarctic Survey has been monitoring the local marine ecosystems in Ryder Bay due to their sensitivity to environmental change and the surprisingly large role benthos play in removing carbon from the atmosphere. According to the report, “The scour monitoring has probably become the longest continuously running direct measurement of disturbance on the seabed anywhere in the world.” With roughly 93 percent of carbon...

Read More

How Glacial Lakes in India Offer Lessons on Adaptation

Posted by on Nov 10, 2016 in Adaptation, All Posts, Featured Posts | 0 comments

How Glacial Lakes in India Offer Lessons on Adaptation

Spread the News:ShareSituated on a high plateau in northwest India, the Ladakh region is part of the contested Indian state of Jammu and Kashmir. While local communities share similar linguistic, cultural, and religious beliefs with Tibet, Pakistan and India continue to disagree on territorial claims in the region. Located in the Himalaya Mountains, the Ladakh region is home to some of the world’s largest glaciers outside of polar regions with 266 glacial lakes, according to Mountain Research and Development. Given the recent warming temperature trends, the glacial retreat in the region places Ladakh’s small mountain communities at risk for destructive events known as glacial lake outburst floods or GLOFs. A GLOF occurs when the terminal moraine dam located at the maximum edge of a glacier collapses, releasing large volumes of water. In an attempt to minimize these threats to small mountain communities, the International Research Institute of Disaster Science, the Department of Environmental Science at Niigata University, and the Ladakh Ecological Development Group offered a one-day workshop to educate populations on their local risks due to the increased numbers of glacial lakes in the region. Three months after the workshop, facilitators returned to the area to survey local villagers to measure the retention and overall success of this adaptive approach.  In the article, scientists report that knowledge of risks was limited: “Most villagers knew of some but not all of the glacier lakes in the valley – primarily those closest to the regular routes used in their daily lives, such as near pasturelands in the headwater areas and along trade routes to the adjacent valleys.” The majority of villagers obtained their knowledge from communications with people who had come across the glacial lakes accidentally, according to the researchers. By presenting and encouraging action that complemented daily lives, the scientists believed they were able to better prepare communities for climate risks increases. The scientists were able to provide local villagers with information on how to more accurately assess glacier lakes and the potential risk for a GLOF by developing an understanding of local routes. These tools were promoted to help villagers contribute to a stronger, more resilient local mountain community. A warming planet has caused glacial melt to increase in regions like northwest India, leading to the formation of more glacial lakes since the 1970s, according to NASA. With the increased number of glacial lakes located in the Ladakh region, the risk for glacial outburst flood rises, as stated by Worni et al. Given the high altitude origins of these glacial lakes, a sudden release of water can have similar catastrophic impacts as a massive avalanche. The sudden force is capable of leveling anything in its path, including villages. “[GLOFs] result in serious death tolls and destruction of valuable natural resources, such as forests, farms, and costly mountain infrastructures,” according to the India Environmental Portal. “The Hindu Kush-Himalayan region has suffered several GLOF events originating from numerous glacial lakes, some of which have trans-boundary impacts.” Educating and preparing small mountain communities becomes increasingly critical because forecasting abilities for these events are limited. The forecasting challenges surrounding GLOFs makes communicating risk to local communities difficult. In an attempt to reach and effectively communicate risks to remote mountain villages in the Ladakh region, the International Research Institute of Disaster Science, the Department of Environmental Science, Niigata University, and the Ladakh Ecological Development Group developed a concept for the one day workshop. According to the report, of the 120 people participating, three villages were represented, all possessing different leveled risks. Villagers were picked at random and varied in age from school children to elderly members in the community. Once the workshop began, facilitators encouraged...

Read More

Glaciers Help Explain Suffering Salmon Populations

Posted by on Oct 27, 2016 in Adaptation, All Posts, Communities, Featured Posts | 0 comments

Glaciers Help Explain Suffering Salmon Populations

Spread the News:ShareThe Nooksack Indians, who live in northwest Washington near the border of Canada, are fighting to save local salmon populations through a variety of innovative measures. Several species of salmon reside in the Nooksack River, which is comprised of three main forks that drain a large portion of the Cascade Range into Bellingham Bay. The salmon of the Nooksack are struggling as waters in the river warm. In response, the Nooksack Indians have turned to local glaciers to help understand and resolve the otherwise unrestricted impacts of climate change. The waters of the Nooksack River have long housed several salmon species that have provided tribes like the Nooksack with sustenance and financial support. In recognition of the importance of fishing for Native American communities, fishing rights were granted to the local tribes through the Treaty of Point Elliott in 1855. However, these fishing rights are threatened by the dwindling salmon populations struggling to keep up with the changing climate. The endangerment of the local salmon populations aren’t just an economic loss for the Nooksack Indians, but a culturally significant loss as well. Oliver Grah, Water Resources Program Manager for the tribe, points out, “The Nooksack Indian Tribe is place-based. That is, tribal members are supposed to stay and live on or near their reservation.” Once the river ecosystems reach a specific tipping point, the salmon populations will begin to die off and the impacts on local tribes will be deeply felt. In an effort to avert worrisome climate projections, the Nooksack Indian Tribe has been proactively implementing adaptive infrastructure and closely monitoring nearby glaciers crucial to healthy salmon numbers. It’s through thoughtful and long-term adaptation and monitoring plans that the Nooksack Tribe seeks to ease the environmental stressors that may critically alter salmon habitats. Pacific Northwest salmon populations fare best in periods having “high precipitation, deep mountain snowpack, cool air and water temperatures, cool coastal ocean temperatures, and abundant north-to-south ‘upwelling’ winds in spring and summer,” according to the U.S. Fish & Wildlife Service. The Nooksack River relies heavily on the glacial runoff from both Mount Baker and Mount Shuksan located near the U.S.-Canada border. Summer glacial melt has historically helped keep rivers cool and ideal for salmon, according to Northern Arizona University. However, as places like Washington continue to see above average temperatures, the glacial snowpack has started to suffer. When the glaciers suffer, the salmon suffer. With the current temperature trends, salmon populations will slowly wane to extinction in the Nooksack river, according to Grah. Grah states, “Ultimately, loss of glacier melt due to glacier recession will result in reduced stream flows and increased temperatures late in the summer when salmon are most vulnerable.” Different salmon species breed during the late summer and early fall, according to the National Park Service. This process begins in freshwater when a salmon egg nest becomes fertilized and remains embedded in the river bottom during the winter months. In the spring, eggs hatch and remain close to the nest for several months. Once the salmon have matured and grown in size, they begin to migrate towards the ocean. Depending on salmon breed, the migration can take anywhere from 0-2 years. Once the salmon reach the mouth of the river, they feed to increase their size and chance of survival in the ocean. Salmon can remain in the ocean for up to 8 years before migrating back to their native streams for reproduction. But this entire process relies on a consistent habitat in the salmon’s native river. The Nooksack Tribe recognizes the importance of trying to maintain this original ecosystem...

Read More