Posts by Yurong Yu

Roundup: Snow Bacteria, Sting, and Glacier Awareness

Posted by on Feb 20, 2017 in All Posts, Featured Posts, News, Roundup, Science | 0 comments

Roundup: Snow Bacteria, Sting, and Glacier Awareness

Spread the News:ShareRoundup: Bacteria, Sting, and Glacier Awareness   Snow Bacteria in the Tibetan Plateau From INFONA: “Snow bacterial abundance and diversity at the Guoqu Glacier and the East Rongbuk Glacier located in the central and southern Tibetan Plateau were investigated using a 16S rRNA gene clone library and flow cytometry approach. Bacterial abundance was observed to show seasonal variation, with different patterns, at the two glaciers. High bacterial abundance occurs during the monsoon season at the East Rongbuk Glacier and during the non-monsoon season at the Guoqu Glacier. Seasonal variation in abundance is caused by the snow bacterial growth at the East Rongbuk Glacier, but by bacterial input from the dust at the Guoqu Glacier. Under the influence of various atmospheric circulations and temperature, bacterial diversity varies seasonally at different degrees.” Read more about it here.     New Animated Music Video – Sting’s “One Fine Day” From AboutVideo: “Some celebrities do not grow old, not only outwardly but also in the creative plan. In November 2016, the British singer Sting has pleased his fans with a new studio album ’57th & 9th,’ his 12th. On sounding, the album refers to the days Sting was part of the band The Police. The success of the new album has fixed the singer in the top twenty of the UK Albums Charts… In the song ‘One Fine Day,’ Sting sings about protecting the environment. He calls for common sense with regard to nature and its gifts. The musician appears in the video as a silhouette on crumpled paper. The beautiful images on paper give a sense of danger. Sting shows how the glaciers are melting and the politicians are endlessly arguing with each other, leading to the destruction of the planet.” Watch the video here.     Raising Awareness About Glacier Retreat From Pamir Times: “A group of mountaineers and a researcher from Shimshal Valley – Hunza, reached Askoli, a remote mountain village in Skardu, after walking across the Braldu Pass. They are on a a mission to raise awareness about saving glaciers from depleting… The expedition members surveyed Mulungdi glacier and Khurdupin glacier before embarking on their journey to Askoli on January 6… Pakistan is home to world’s largest ice glaciers out of the polar region. Spread over an area of 16933 square kilometers, there are over 5000 glaciers in the Gilgit-Baltistan and Chitral regions of Pakistan, including the famous Siachin Glacier, Biafo Glacier, Khoordhopin Glacier, Batura Glacier, Braldu Glacier, Snow lake and many more. These glaciers are the major source of water feeding the major rivers in Pakistan.” Learn more here.   Spread the...

Read More

Penitentes found on Pluto!

Posted by on Feb 14, 2017 in All Posts, Featured Posts, News, Science | 0 comments

Penitentes found on Pluto!

Spread the News:Share“Don’t tell Mars that my new favorite planet became Pluto!” said John Moores, assistant professor in the department of earth and space science and engineering at York University, whose findings appeared in the journal Nature in early January. But what caused Moores’ sudden change of heart?                 Interview of John Moores by York University With help from NASA and Johns Hopkins University, Moores and a team of scientists discovered evidence of penitentes on Pluto. As Moores et al. explain in their article, “Penitentes are snow and ice features formed by erosion that, on Earth, are characterized by bowl-shaped depressions several tens of centimetres across, whose edges grade into spires up to several metres tall.” Though these penitentes on Pluto are composed of frozen methane and nitrogen, not frozen water, the finding still means that snow and ice features previously only seen on Earth have been spotted elsewhere within our solar system. This suggests that these features may also exist on other similar planets. “No matter whether we are on Earth or Pluto, the same physics applies. We can extend these results to other environments as well,” writes Moores on his blog. Surprised by nature, they discovered snakeskin-like parallel ridges in the Tartarus Dorsa area on Pluto. These ridges resembled penitentes seen on Earth. There have been other examples of similar features on other planets, but these were often caused by processes different from the ones on Earth. Therefore, Moores et al. at first did not believe the features could actually be penitentes. “Pluto was nothing like what we expected,” Moores notes on his blog. In order to determine that the features were true penitentes, Moores et al. applied a terrestrial model called the Claudin Model to Pluto. The model was originally developed to describe a mechanism to control the spacing of penitentes on Earth. When Moores et al. applied the model to Pluto, something strange happened: “The model, which was modified appropriately for Pluto, actually predicted penitentes consistent with what we saw on Pluto when using parameters consistent with Pluto’s extremely thin, yet extremely stable atmosphere,” Moores said.  “The theory fits the available facts quite well.” Keeping with these observations, the model also predicted that penitentes would not form at all in the more volatile nitrogen ices elsewhere on the dwarf planet, according to Moores. First reported in the Chilean Andes by Darwin in the 1830s, penitentes form in areas of strong sunlight. In certain conditions, initial random irregularities in a snow surface can be deepened as curved depressions focus sunlight, accelerating sublimation (the transition of water molecules directly from a solid state to a gas state). As the depressions deepen, the higher points remain, shading the parts behind them, and thus slowing down sublimation. The result is a collection of spiky forms, all oriented toward the sun. Vapor processes within the depressions also contribute to the process of formation of penitentes. How can such large penitentes form on Pluto, when Pluto’s environment is so different from the Earth? “It’s because these penitentes do not form in water ice but in methane ice, which evaporates more easily,” Moores explained to GlacierHub. “Furthermore, the atmosphere into which the sublimating methane vapor mixes is much less dense (about 15,000 times less dense than on Earth), allowing the vapor-rich layer to be thicker.” Moores is excited about his findings. “Those 1,750 words are the most challenging I’ve ever written in my professional life,” he said, referring to his study published in Nature. “It has been an honor to be able to contribute to the science of Pluto, and I will...

Read More

Seasonal Lake Changes on the Tibetan Plateau

Posted by on Jan 31, 2017 in All Posts, Featured Posts, Interviews, Science | 0 comments

Seasonal Lake Changes on the Tibetan Plateau

Spread the News:ShareThe Kunlun Mountains, featured as a mythical location in the legendary Chinese text Shanhai Jing, are one of the longest mountain chains in Asia. From the Pamirs of Tajikistan, the mountains run east along the border of Xinjiang and Tibet to the Qinghai province, forming part of the Tibetan Plateau. A number of important glaciers and lakes are found in the area, attracting glaciology researchers to the region throughout the year. Yanbin Lei, an associate research fellow at the Chinese Academy of Sciences, is one scientist conducting important field work in the region. Recently, Lei et al. published a paper  in the American Geophysical Union Journal Geophysical Research Letters that describes how lakes in the Tibetan Plateau are growing and deepening due to climate change. In particular, the scientists identified two patterns of lake level seasonality. Because the climate is warming, an earlier melt and a relatively large increase in spring runoff are observed for all scenarios. This in turn increases water availability in the Indus Basin irrigation scheme during the spring growing season, according to Lei et al. This finding projects that rainfall will increase, according to another study by Su er al. In addition,  the discharge in the major large rivers of South and East Asia will also increase. “Though crucial, the paucity of instrumental data from the sparsely populated Tibetan Plateau has limited scientific investigations of hydroclimate response to recent climate change,” Lei told GlacierHub. The Tibetan Plateau has a large spatial coverage and high elevation (the average latitude is over 4000 meters), not to mention an incredibly harsh climatic condition, which makes conducting research and taking measurements difficult. Because the seasonal dynamics of the lakes is not sufficiently understood, the research conducted by Lei et al. in the Tibetan Plateau was unprecedented. “In general, there is a lack of monitoring of lake levels in the Kunlun Mountains, and consequently, data is missing for the lakes,” Lei  added. “Even if remote sensing were developed as a major method for studying inter-annual changes of lakes, the accuracy and frequency of this method would still be limited to study seasonal changes.” With the help of “situ observations,” Cryosat-2 satellite altimetry data between 2010 and 2014, and Gravity Recovery and Climate Experiment (GRACE) data, Lei et al. managed to identify two patterns of lake level seasonality. “In the central, northern, and northeastern Tibetan Plateau, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation,” Lei et al. describe in their paper.  “In the northwestern Tibetan Plateau, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes.” In an interview with GlacierHub, Lei summarized the reasons for this finding: “The difference was mainly caused by the glaciers and precipitation. There are widespread glaciers in the northwest Tibetan Plateau and the area of glaciers is larger than the area of lakes. The precipitation in summer is also low, resulting in high spring snowfall and large summer glacier melt to feed the lake. Meanwhile, in the northern Tibetan Plateau, there are fewer glaciers but more summer rainfall, causing an increase in the lake level,” Lei told GlacierHub. Additionally, the seasonal difference of precipitation is also important. Annual precipitation in the northern Tibetan Plateau is 300-400 mm with 90 percent of precipitation occurring in summer, according to Lei. Annual precipitation in the northwest Tibetan Plateau is about 200 mm because spring snowfall counts more. “The lake level responses to different drivers indicates heterogeneous sensitivity to climate...

Read More

Roundup: Rock Glaciers, Ice Tongues and Flood Warnings

Posted by on Jan 23, 2017 in All Posts, Featured Posts, News, Roundup, Science | 0 comments

Roundup: Rock Glaciers, Ice Tongues and Flood Warnings

Spread the News:ShareRoundup: Rock Glaciers, Floating Glaciers, and Flood Warnings Ecology of Active Rock Glaciers From Boreas: “Active rock glaciers are periglacial landforms (areas that lie adjacent to a glacier or ice sheet that freeze and thaw) consisting of coarse debris with interstitial ice (ice formed in the narrow space between rocks and sediment) or ice-core. Recent studies showed that such landforms are able to support plant and arthropod life and could act as warm-stage refugia for cold-adapted species due to their microclimate features and thermal inertia. However, integrated research comparing active rock glaciers with surrounding landforms to outline their ecological peculiarities is still scarce… Our data show remarkable differences between stable slopes and unstable landforms as a whole, while few differences occur between active scree slopes and active rock glaciers: such landforms show similar soil features but different ground surface temperatures (lower on active rock glaciers) and different occurrence of cold-adapted species (more frequent/abundant on active rock glaciers)… The role of active rock glaciers as potential warm-stage refugia for cold-adapted species is supported by our data; however, at least in the European Alps, their role in this may be less important than that of debris-covered glaciers, which are able to host cold-adapted species even below the climatic tree line.” Read more about the role of active rock glaciers as potential warm-stage refugia here:   Fluid-Ice Structure Interaction of the Drygalski Ice Tongue From UTAS: “The Drygalski Ice Tongue (DIT) is the largest floating glacier in Antarctica, extending approximately 120km into McMurdo Sound, and exhibits a significant influence upon the prevailing northward current, as the ice draft (measurement of ice thickness below the waterline) of the majority of the DIT is greater than the depth of the observed well-mixed surface layer. This influence is difficult to characterize using conventional methods such as in-situ LADCP (Lowered Acoustic Doppler Current Profiler) measurements, vertically collected profiles or long-term moorings as these are generally relatively spatially sparse datasets. In order to better relate measurements across the entire region of influence of the DIT region, a set of Computational Fluid Dynamics simulations (uses numerical analysis to analyze fluid flows) were conducted using a generalized topography of a mid-span transect of the DIT… Numerical modeling of environmental flows around ice structures advances the knowledge of the fluid dynamics of the system in not only the region surrounding the DIT but also provides a clearer insight into fluid-ice structure interactions and heat flux in the system. This may lead to a better understanding of the long-term fate of floating glaciers.” Learn more about fluid-ice structure interactions here:   Flood Early Warning Systems (EWSs) in Bhutan From ICIMOD: “Bhutan experiences frequent hydrometeorological disasters. In terms of relative exposure to flood risk as a percentage of population, Bhutan ranks fourth highest in the Asia-Pacific region, with 1.7% of its total population exposed to flood risk. It is likely that climate change will increase the frequency and severity of flood disasters in Bhutan. Inequalities in society are often amplified at the times of disaster and people living in poverty, especially women, the elderly, and children, are particularly vulnerable to flood hazards. Timely and reliable flood forecasting and early warnings that consider the needs of both women and men can contribute to saving lives and property. Early warning systems (EWSs) that are people-centered, accurate, timely, and understandable to communities at risk and that recommend the appropriate action to be taken by vulnerable communities can save people more effectively. To improve the understanding of existing early warning systems (EWSs) in the region and their effectiveness, ICIMOD has conducted an assessment of...

Read More

The Skagit Eagle Festival

Posted by on Jan 19, 2017 in All Posts, Communities, Featured Posts, News, Tourism | 0 comments

The Skagit Eagle Festival

Spread the News:ShareThe Bald Eagles of the Skagit River (source: Joshua Johnson/YouTube). Floating down the Skagit River in Washington state in a small boat in the winter, you will likely spot many bald eagles along your trip. With wings spreading wide, the eagles soar freely in the sky, having recently returned from northern Canada and Alaska to the Skagit River to hunt migrating salmon. The Skagit salmon depend on the glaciers of the Cascade Range to keep the waters of the river healthy and optimal for breeding. With an abundant salmon population, the eagle’s numbers have become so plentiful during the winter season that the region runs a month-long eagle-watching festival and a year-round interpretive center dedicated to the migrating birds. During eagle-watching season in eastern Skagit County, which begins in January, tourists and birdwatchers arrive from all over the world to track the bald eagles. First started in 1987, the Skagit Eagle Festival is now a popular annual event. Sponsored by the Chamber of Commerce in the small town of Concrete, it features many activities, including local music, floating tours, outdoor walks and educational programs, including a Salmon Run along the river. During this year’s Skagit Eagle Festival, Native American celebrations also took place along the glacier-fed river, which remains very important to the local tribes. The Samish Indian Nation’s cultural outreach coordinator Rosie Cayou-James and native musician Peter Ali teamed up to organize a special “Native Weekend” at Marblemount Community Hall, featuring Native American history, storytelling and more. Local tribal elders and experts made educational presentations and performed native music at the event. Cayou-James, the main organizer of the weekend, told GlacierHub, “The eagle festival is a way to honor the ancestors. I cannot speak for the other tribes, but the Samish feel very connected to eagles and orcas.” The Skagit River runs from high in the Cascades to Puget Sound, benefiting both the people and animals that live along the river. It provides a habitat for the five major species of Pacific salmon. Consequently, the river has the country’s largest wintering populations of eagles outside of Alaska. But the health of the eagle and fish populations in the Skagit River depends on the health of the glaciers of the region, which are suffering as a result of climate change. “Climate change has damaged the natural flow of salmon, which is the main source of survival for resident eagles and orcas,” Cayou-James explained to GlacierHub. Samish history instructs members to protect the proper relationship to the land and its resources, including the Skagit River and surrounding glaciers, by teaching how the natural and spiritual worlds “cannot be separated,” according to the Samish Indian Nation website. In total, there are around 375 glaciers in the Skagit River watershed, as reported by the Skagit Climate Science Consortium. The glaciers keep the flow of the Skagit River high throughout the summer. In addition, glacier water keeps nearby rivers at low temperatures throughout the year, making them optimal for salmon. The salmon rely on the cool glacier-fed water to survive. Without glaciers, stream temperatures become higher and keep climbing, becoming lethal to adult salmon. Because glaciers are extremely sensitive to climate change, higher temperatures have increased rates of melting, reducing snow accumulation in the winter and changing the timing and duration of runoff. Worse even, the glaciers of the Cascades have not been able to fully rebuild themselves in the winter through accumulated snowfall. The glaciers of the Cascades have shrunk to half of what they were a century ago, according to the United States Geological Survey. In addition, the average winter freezing elevation in the Skagit has risen consistently...

Read More