Posts by Sarah Kai Zhen Toh

Let it Snow… and Save a Glacier

Posted by on May 30, 2017 in All Posts, Featured Posts, News | 0 comments

Let it Snow… and Save a Glacier

Spread the News:ShareNews about shrinking glaciers is not uncommon, but have you ever heard of regrowing one artificially? That is exactly what a team of researchers intends to do: use snow machines, also known as Schneekanonen (snow-cannons) in German, to save Morteratsch Glacier in the Swiss Alps. Felix Keller, a glaciologist at the Academia Engiadina in Switzerland, and Johannes Oerlemans, director of the Institute for Marine and Atmospheric Research at Utrecht University in the Netherlands, will use snow machines to slow down, or even reverse, the retreat of the glacier as announced at the annual meeting of the European Geosciences Union in Vienna, Austria, on April 27th. Morteratsch, located in Pontresina in the canton of Graubünden, is the third largest glacier in the Eastern Alps. It is also one of the most easily accessible glaciers: a 50-minute walk from Morteratsch train station along a hiking trail leads visitors directly to the glacier tongue. This makes it a popular tourist attraction that contributes to the economy of the region. However, the glacier has been shrinking rapidly because of climate change, retreating about 2.5 kilometers over the last 150 years. The plan to save the glacier using snow machines was inspired by the successful use of white fleece coverings to slow down the retreat of the nearby Diavolezzafirn Glacier. This method has been applied over the past 10 years to help the glacier grow by up to 8 meters in length. Locals reached out to Oerlemans and Keller, who have done prior research in the region, to try to save Morteratsch in a similar manner, except the latest plan involves covering sections of the glacier with snow to reduce melting during the summer. “The municipality of Pontresina, in whose territory the glacier is situated, is trying to position itself as a village at the forefront of climate change issues,” Daniel Farinotti, a glaciologist at both Swiss Federal Institute of Technology (ETH) in Zurich and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), shared in an interview with GlacierHub. A layer of snow will protect the ice from incoming radiation, which would warm up the glacier. A secondary and smaller effect would be to protect the ice from overlying air, which could be above freezing. Models used by the researchers suggest that a thin layer of snow covering under one square kilometer at the top of the glacier would be enough to protect the glacier. Oerlemans also estimates that this could help the glacier regain 800 meters of length in two decades. This plan would involve the use of 4,000 snow machines, which produce snow from water and pressurized air. They will be supplied with meltwater from a nearby glacier, which addresses a key concern: “If we want to do it on a larger scale, the main challenge will be the availability and transportation of meltwater onto the glacier,” Oerlemans shared with GlacierHub. Not everyone is convinced that the plan will work. “I am still a little skeptical that the technical problems are solved and would like to see answers to some questions,” Greg Greenwood, executive director of the Mountain Research Initiative, shared with GlacierHub. These questions include exactly where the snow will be deposited, financial and environmental costs, and a comparison with other technical options. Oerlemans and Keller are currently conducting a pilot project costing $100,000 at the foot of Diavolezzafirn glacier, also in Switzerland. 13 feet of snow will be blown over the 1,300-square-foot glacier by the end of the month. If it works, they hope that the Swiss government will fund the Morteratsch project, which will cost several million Swiss...

Read More

Photo Friday: Inside Glacier Caves

Posted by on May 26, 2017 in All Posts, Featured Posts, Images, Tourism | 0 comments

Photo Friday: Inside Glacier Caves

Spread the News:ShareCaves can form within glaciers as a result of water running through or under a glacier. They are often called ice caves, but the term more accurately describes caves in bedrock that contain ice throughout the year. Water usually forms on the glacier’s surface through melting, before flowing down a moulin (vertical to nearly vertical shafts within glaciers or ice sheets) to the base of the glacier. Glacier caves can also form as a result of geothermal heat from hotsprings or volcanic vents beneath glaciers, such as the Kverkfjöll glacier cave in Vatnajökull glacier in Iceland, or where glaciers meet a body of water, with wave action. Glacier caves can collapse or disappear because of glacier retreat. For example, the Paradise Ice Caves on Mount Rainier in Washington had 8.23 miles of passages in 1978. However, it collapsed in the 1990s, and the section of the glacier that contained the caves retreated between 2004 and 2006. Prior to collapse, caves can be used to access the interior of glaciers for research purposes, with the study of glacier caves sometimes known as glaciospeleology. Others also serve as popular tourist attractions due to their beauty.           Sandy Glacier Caves, Mount Hood, Oregon, CA – Photograph via Josh Hydeman pic.twitter.com/hWEPMllbqS — Life on Earth (@planetepics) January 31, 2016 Read about a time when Putin visited a glacier cave here. Spread the...

Read More

Could Cryoconites Hold the Secrets to Extraterrestrial Life?

Posted by on May 16, 2017 in All Posts, Featured Posts, Science | 1 comment

Could Cryoconites Hold the Secrets to Extraterrestrial Life?

Spread the News:ShareIn recent years, scientists have found other locations on planets, moons and exoplanets where life might exist. Different animals and organisms like tardigrades (eight-legged microscopic animals commonly known as water bears) have also been sent into space to explore the conditions for survival away from Earth. However, a recent paper published in the journal Contemporary Trends in Geoscience argues that we can look closer to home to understand survival strategies of extraterrestrial life. More concretely, the authors propose we look to glacier cryoconites, which are granular or spherical mineral particles aggregated with microorganisms like cyanobacteria, algae, fungi, tardigrades and rotifera (another type of multicellular, microscopic animal). Glaciers are among the most extreme environments on Earth due to the high levels of ultraviolet (UV) radiation received and the permanently cold conditions. These factors make them analogous to icy planets or moons. The associations of cryoconites and microorganisms on glaciers are held together in biofilms by extracellular polymeric substances (natural polymers of high molecular weight) secreted by cyanobacteria. They exist as sediment or in cryoconite holes (water-filled reservoirs with cryoconite sediment on the floor) on glacier surfaces. Cryoconites have been found on every glacier where researchers have looked for them. Cryoconite holes form due to the darkening of color (also termed a decrease in the albedo, or reflectivity of solar radiation) of cryoconite-covered surfaces. The darker color leads to greater absorption of radiation, with an associated warming and increasing melt rates. “Today we think that simple life forms might have survived on Mars in glacial refugia or under the surface. They can and could have evolved on Saturn and Jupiter’s icy moons,” Krzysztof Zawierucha, the lead author from Adam Mickiewicz University in Poland, shared with GlacierHub. “Imagine a multicellular organism, even a microscopic one, which is able to live and reproduce on an icy moon… It is a biotechnological volcano.” Organisms that live in glaciated regions are adapted to survive in extreme conditions and could provide insights into the survival strategies of extraterrestrial life. Some possess lipids (organic compounds that are not water-soluble), and produce proteins and extracellular polymeric substances that protect them from freezing and drying. Others are able to enter cryptobiotic states in which metabolic activity is reduced to an undetectable level, allowing them to survive extremely harsh conditions. The microorganisms in cryoconites cooperate and compete, affecting each other’s survival responses. Therefore, previous astrobiological studies, which have only been conducted on single strains of microorganisms, may not reflect the true survival mechanisms of these microorganisms. In addition, previous astrobiological studies involving some of these microorganisms used terrestrial or limno-terrestrial (moist terrestrial environments that go through periods of immersion and desiccation) taxa, such as moss cushions, which are less likely to be well-adapted to icy planets than their glacier-dwelling cousins. Tardigrades found in cryoconite have black pigmentation, which probably protects them from high UV radiation. Along with tardigrades, glacier-dwelling rotifera, specifically Bdelloidea, also possess a great ability to repair DNA damage, which confers high resistance to UV radiation. Both may also be better adapted to surviving in constantly near-freezing conditions than terrestrial forms. “So far, a number of processes analogous to those on Mars and other planets or moons have been found in the McMurdo Dry Valley as well as other dry valleys or brines in sea ice, both of which were considered to be extraterrestrial ecosystem analoguos. There is a great body of evidence that some bacteria and microscopic animals like tardigrades may survive under Martian conditions,” Zawierucha explained. “Of course, to survive does not mean to be active and to reproduce. Undoubtedly, however, it triggers consideration...

Read More

Roundup: Kayaks, Snow Machines and Drones

Posted by on May 8, 2017 in All Posts, Featured Posts, Roundup | 0 comments

Roundup: Kayaks, Snow Machines and Drones

Spread the News:ShareRoundup: Kayaks, Regrowing Glaciers, and the Bowdoin   Research Using Remote-Controlled Kayaks From Alaska Public Media: “LeConte Glacier near Petersburg… [is] the southern-most tide water glacier in the northern hemisphere and scientists have been studying it to give them a better idea of glacial retreat and sea level rise around the world… to get close to the glacier, which is constantly calving, a team of scientists is relying on unmanned, remote controlled kayaks… these kayaks have been completely tweaked by Marion and an ocean robotics team from Oregon State University… The boats are customized with a keel, antennas, lights and boxes of computer chips and wires.” Find out more about the kayaks and research here.   Regrowing Morteratsch Glacier with Artificial Snow From New Scientist: “The idea is to create artificial snow and blow it over the Morteratsch glacier in Switzerland each summer, hoping it will protect the ice and eventually cause the glacier to regrow… The locals had been inspired by stories that white fleece coverings on a smaller glacier called Diavolezzafirn had helped it to grow by up to 8 metres in 10 years… Oerlemans says it would take 4000 snow machines to do the job, producing snow by mixing air blasts with water, which cools down through expansion to create ice crystals. The hope is that the water can be “recycled” from small lakes of meltwater alongside the glacier… But the costs… are immense.” Find out more about how this works here.   Drones Capture a Major Calving Event From The Cryosphere: “A high-resolution displacement field is inferred from UAV orthoimages (geometrically corrected for uniform scale) taken immediately before and after the initiation of a large fracture, which induced a major calving event… Modelling results reveal (i) that the crack was more than half-thickness deep, filled with water and getting irreversibly deeper when it was captured by the UAV and (ii) that the crack initiated in an area of high horizontal shear caused by a local basal bump immediately behind the current calving front… Our study demonstrates that the combination of UAV photogrammetry and ice flow modelling is a promising tool to horizontally and vertically track the propagation of fractures responsible for large calving events.” Find out more about the study here. Spread the...

Read More

Using Drones to Study Glaciers

Posted by on May 2, 2017 in All Posts, Featured Posts, Science | 0 comments

Using Drones to Study Glaciers

Spread the News:ShareUnderstanding the nature of glacial changes has become increasingly important as anthropogenic climate change alters their pace and extent. A new study published in The Cryosphere Discussions journal shows how Unmanned Aerial Vehicles (UAVs), commonly known as drones, can be used to do this in a relatively cheap, safe and accurate way. The study represents the first time a drone has been used to study a high-altitude tropical Andean glacier, offering insight into melt rates and glacial lake outburst flood (GLOF) hazards in Peru. The study was carried out by Oliver Wigmore and Bryan Mark, from the University of Colorado Boulder and Ohio State University respectively. It is part of a larger project aimed at understanding how climate change is affecting the hydrology of the region and how locals are adapting to these changes. The researchers used a custom-built hexa-multirotor drone (a drone with propellers on six arms) that weighed about 2kg to study changes in Llaca Glacier in the central Cordillera Blanca of the Peruvian Andes. Llaca, one of more than 700 glaciers in the Cordillera Blanca, was chosen for both logistical and scientific reasons. It covers an area of about 4.68 square kilometers in Huascaran National Park and spans an altitudinal range of about 6000 to 4500 meters above sea level. Like other glaciers within the Cordillera Blanca, it has been retreating rapidly because of anthropogenic climate change. To obtain footage, the researchers had to drive three hours on a winding, bumpy road from the nearest town, located about 10km away from the valley. “This was followed by a half–hour hike to the glacier,” Wigmore stated. To overcome some of the challenges of working in a remote, high-altitude region, the drone was custom-built using parts bought directly from manufacturers. In this case, a base was bought from a manufacturer. “I modified it by making the arms longer, lightening it with carbon fiber parts, and adding features like a GPS, sensor systems, infrared and thermal cameras, and other parts required for mapping,” Wigmore shared. Building their own drone allowed the researchers to repair it or replace parts when necessary, as sending it off to be repaired while in the field was not possible. It also allowed them to customize the drone to their needs. “No commercial manufacturers could promise that our equipment would work above an altitude of about 3000m, which is well below the glacier,” Wigmore said. Using drones to study glaciers has advantages over conventional methods in terms of access to glaciers and spatial and temporal resolutions of data. These advantages have been further enhanced by hardware and software developments, which have made drones a relatively cheap, safe and accurate remote sensing method for studying glaciers at a finer scale. For example, Wigmore can build a UAV for about $4000, compared to the high cost of airplanes and satellites also used in remote sensing. Wigmore and his team carried out aerial surveys of the glacier tongue (a long, narrow sheet of ice extended out from the end of the glacier) and the proglacial lake system (immediately beyond the margin of the glacier) in July 2014 and 2015. The drone was flown about 100 meters above the ice while hundreds of overlapping pictures were taken to provide 3-D images and depth perception. High resolution (<5cm) Digital Elevation Models (DEMs) and orthomosaics (mosaics photographs that have been geometrically corrected to obtain a uniform scale) were produced, revealing highly heterogeneous patterns of change across the glacier and the lake. The data also revealed that about 156,000 cubic meters of ice were lost within the study period. The...

Read More