Posts by Sam Inglis

Photo Friday: Ice diving in the Alps – Glacial Lake Sassolo

Posted by on Jul 29, 2016 in All Posts, Experiences, Featured Posts, Images, Sports, Uncategorized | 0 comments

Photo Friday: Ice diving in the Alps – Glacial Lake Sassolo

Spread the News:ShareFranco Banfi is a professional underwater photographer, renowned for his spectacular images of marine wildlife, captured across every ocean on the planet. In 2010, Banfi, a Swiss national, dived into the Lago di Sassolo (Lake Sassolo) to reveal the hidden wonders of the ice mazes which form in the glacial lake at 6,560 feet (2,000 m) above sea level, in the European Alps. Ice diving is highly technical, and is complicated when undertaken at altitude. Banfi has been diving for 35 years, and has “around 100 dives under the ice,” experience gained through his pursuit of the perfect image of rarely seen species. In 2005, Banfi chased Greenland sharks (Somniosus microcephalus) in the Arctic Circle, and leopard seals (Hydrurga leptonyx) in the Antarctic Ocean. Banfi wound his way through the sub- and englacial pathways of the ice, in temperatures around 35.6-37.4°F (2-3°C). He remarked, “It can be dangerous if you don’t know the place and if you don’t have experience in an ice environment.” However, Banfi was raised in Cadro, Switzerland, and grew up diving Lago di Lugano (Lugano Lake). Reflecting on the dangers of his dive at Sassolo, Banfi said “It gets quite dark depending on how much ice there is above your head at the surface – so in some places with thicker ice it gets dangerously dark.” He added, “Ice like this can collapse anytime,” as the exhaled bubbles alter the buoyancy of the overlaying ice. According to the seasoned diver, his underwater model and dive partner Sabrina Belloni joined him on the journey through the icey labyrinth, but was hesitant, awaiting terrifying signs of an imminent failure of the thick ice. “You can usually hear the crack, but not always,” said Banfi. “If you hear this, it’s already too late.” Spread the...

Read More

First global analysis of the societal impacts of glacier floods

Posted by on Jul 28, 2016 in All Posts, Communities, Featured Posts, Interviews, Science | 0 comments

First global analysis of the societal impacts of glacier floods

Spread the News:ShareTwo British researchers recently published the first global inventory and damage assessment of the societal consequences incurred by glacial lake outburst floods (GLOFs). They revealed that glacial lake outburst floods (GLOFs) have been declining in frequency since the mid-1990s, with the majority released by ice dam failures. Glacial hazard specialists Jonathan Carrivick and Fiona Tweed spent 18 months scouring the records of over 1,348 GLOFs, determining that such floods have definitely claimed over 12,400 lives since the medieval period. Their work stems from a need to strengthen data on glacier lakes. “There was very very little quantitative data out there on the importance of glacier lakes, from a societal point of view,” Carrivick said in an interview with GlacierHub. He explained that this recent paper was a natural progression from his earlier research, which focused on modelling hydrological, geological and geomorphological processes. Based purely on frequency, Carrivick and Tweed found that north-west North America (mainly Alaska), the European Alps (mainly Switzerland), and Iceland are the “most susceptible regions” to GLOFs. However, the impacts of these events have have often been minimal, as they occur in sparsely populated, remote regions, and in places where resilience is high. The greatest damage has been inflicted upon Nepal and Switzerland — respectively accounting for 22 percent and 17 percent of the global total damage reported. When Carrivick applied the normalized ‘Damage Index,’ which considered GDPs of the affected country (used as a crude proxy for ability to mitigate, manage and recover), he found that Iceland, Bhutan and Nepal have suffered the “greatest national-level economic consequences of glacier flood impacts.” Historically, Asian and South American GLOFs have been the deadliest, taking the lives of 6,300 and 5,745 individuals since 1560 respectively. However, these figures are dominated by only two catastrophes, which accounted for 88 percent of the 12,445 fatalities confirmed by Carrivick and Tweed. The first, in December 1941, saw over 5,000 Peruvians perish in Huaraz, when a landslide cascaded into the glacial Lake Palcacocha. The second event, swept away more than 6,000 Indians from across Uttarakhand in June 2013, as torrential rains triggered outburst floods and landslides. The study’s authors adopted a method for normalizing damage assessments new to GLOF hazard analysis, striving to fairly compare the cataclysmic impacts of outburst flooding on communities around the world. They found that there has actually been a decline in number of floods since the 1990s, which was surprising to the researchers, given that a 2013 study which they had conducted found that the number and size of glacial lakes has increased, as the world’s ice masses have wasted. Carrivick stated that he was “very interested in the fact that, apparently, so few glaciers have lakes that have burst [0.7% of the total], on a global scale.” He added, “it beggars belief that there isn’t a higher percentage of those lakes that have burst at some point.” In their paper, the pair suggest that the “apparent decline” could be attributed to improved successful stabilisation efforts, natural resilience, greater awareness and preparedness in threatened communities, or declined number of GLOFs from ice-dammed lakes. An additional factor may be that some glacial floods are missing from the English-language record. Carrivick revealed, “We have a contact in China who says that there’s a lot of unpublished floods…that individual has not been able to send us the data yet.” Government restrictions on the flow of potentially sensitive information has contributed to this partial release of data. Carrivick also noted that new data is continually being published, in many cases in foreign languages. He referenced a recent issue of the Geological Journal, which...

Read More

Roundup: Antarctica and Greenland in peril, black carbon

Posted by on Jul 25, 2016 in All Posts, Featured Posts, Roundup, Science, Uncategorized | 0 comments

Roundup: Antarctica and Greenland in peril, black carbon

Spread the News:ShareNinety percent of the western Antarctic Peninsula’s glaciers are retreating From Carbon Brief: “These rivers of ice ooze their way down through the Peninsula’s rocky mountain range and into the ocean, powered by gravity and their own weight. But of the 674 glaciers on the Peninsula’s western side, almost 90% are retreating. This happens when their ice melts faster than new snowfall can replenish it. “The Antarctic Peninsula is one of the fastest warming regions on Earth. Temperatures have risen by more than 3C over the past 50 years. The warming atmosphere has caused some remarkable changes to the eastern side of the Peninsula. The Larsen ice shelf, a floating sheet of ice formed from glaciers spilling out onto the cold ocean, has lost two of its four sections in recent decades.” Learn more about the Antarctic Peninsula’s glaciers and effects on the ocean here.   Greenland lost a mind-blowing 1 trillion tons of ice in under four years From Washington Post: “It’s the latest story in a long series of increasingly worrisome studies on ice loss in Greenland. Research already suggests that the ice sheet has lost at least 9 trillion tons of ice in the past century and that the rate of loss has increased over time. Climate scientists are keeping a close eye on the region because of its potentially huge contributions to future sea-level rise (around 20 feet if the whole thing were to melt) — not to mention the damage it’s already done. Ice loss from Greenland may have contributed as much as a full inch of sea-level rise in the last 100 years and up to 10 percent of all the sea-level rise that’s been documented since the 1990s. “Overall, the ice loss was particularly prevalent in the southwest, but the scientists noted that there were also losses observed in the cooler, northern parts of the ice sheet. Notably, the researchers also found that a solid 12 percent of all the ice loss came from just a handful of glaciers composing less than 1 percent of the ice sheet’s total area.” Read more here.   Understanding black carbon impact on glaciers From International Centre for Integrated Mountain Development (ICIMOD): “In April 2016 and team of glaciologists and experts from the International Centre for Integrated Mountain Development’s (ICIMOD) and partner organisations — Department of Hydrology and Meteorology, Utrecht University, Kathmandu University (KU),Tribhuvan University (TU), Norwegian Water Resources and Energy Directorate (NVI) went to Langtang for a field visit. “‘The elevation of Yala Glacier is higher compared to those in Pakistan. Gulkin Glacier, in Pakistan, starts from 2700 to 4000 m, so there was almost no snow on the glacier in this season. Only towards the top of the glacier at around 4000m AMSL snow was present. The rest of the glacier was mostly debris’, Chaman said. Sachin Glacier, at 3200- 4000m AMSL, is different to Yala and Gulkin, and samples collected from this glacier represent semi-aged or aged-snow. ‘There was fresh snow on the night of collection so the samples were very fresh’  Chaman said of Langtang. He expects to see large variability in black carbon concentrations in the samples, contributing to effect of elevation, geographical location, glacier type, age and fresh samples.” Learn more here.   Spread the...

Read More

Iceland’s fire decimates its ice: Eyjafjallajökull

Posted by on Jul 21, 2016 in All Posts, Featured Posts, Science, Uncategorized | 0 comments

Iceland’s fire decimates its ice: Eyjafjallajökull

Spread the News:ShareA new scientific study investigates the interactions between the Icelandic volcano Eyjafjallajökull’s lava flow and the overlaying ice cap, revealing previously unknown subglacial lava-ice interactions. Six years after  the eruption, the volcano is revisited by the author of the study, Björn Oddsson, a geophysicist with Iceland’s Department of Civil Protection and Emergency Management. He and his team present the most up-to-date chronology of the events, reverse engineer the heat transfer processes involved, and discover a phenomenon which may invalidate previous studies of “prehistoric subglacial lava fields.” Eyjafjallajökull (‘jökull’ is Icelandic for ‘glacier’) hit headlines in April 2010, as it spewed 250 million tonnes of ash into the atmosphere. The explosive event shook the West, as it took an unprecedented toll on trans-Atlantic and European travel, disrupting the journeys of an estimated 10 million passengers. It is only known to have erupted four times in the last two millennia. The first hint that something major was about to happen in 2010 came as a nearby fissure — Fimmvörðuhálsa — to the northeast, began spouting lava in March and April 2010. Just as Fimmvörðuhálsa quieted, a “swarm of earthquakes” rocked the Eyjafjalla range, on April 13. The next day, Eyjafjallajökull started its 39-day eruption. Over four and a half billion cubic feet (130 million m3) of ice was liquefied and vaporized as six billion gallons of lava spewed forth from Iceland’s Eyjafjallajökull stratovolcano. Flowing at distances up to 1,640 feet (500 m) each day, the lava poured down the northern slopes of the Eyjafjalla range, nearly halving the mass of the glacier Gígjökull, as it bored a channel underneath the ice. Oddsson and co-authors Eyjólfur Magnússon and Magnus Gudmundsson have been on the leading edge of Eyjafjallajökull research, developing a comprehensive chronology of the subglacial processes at work in 2010. To complement their timeline, they developed a model demonstrating the probable interactions and volumes involved. The eruption was exceptionally well-documented and studied in real-time by the world-class volcanologists and glaciologists who populate Iceland. Oddsson’s et al. paper relied on a previously uncombined series of datasets (i.e. synthetic aperture radar (SAR), tephra sampling, seismic readings, webcam footage) to develop an holistic model to explain the subglacial formation of the 3.2 km lava field. In April 2010, magma began to rise to the surface — the “culmination of 18 years of intermittent volcanic unrest,” according to Freysteinn Sigmundsson and colleagues. The first outflow of lava rapidly began undermining the base layers of the Eyjafjallajökull ice cap, which was then around 656 ft (200 m) thick. Over two billion gallons of meltwater was generated. Dammed by the surrounding glacier and rock, the water pooled within the caldera (a large cauldron-shaped volcanic crater). There, it was rapidly heated, building up the subglacial pressure under Eyjafjallajökull’s ice cap over two hours — mimicking a pressure cooker. In the early hours of April 14, a “white eruption plume” broke through the overlying ice, ultimately ascending 3.1-6.2 (5-10 km) into the atmosphere. During the first three days of the eruption, a series of vast floods — “hyperconcentrated jökulhlaup[s]” — pulsed from under Gígjökull. The first jökulhlaup completely evacuated within half an hour, at up to 1.45 million gallons (5,500 m3) per second, according to Eyjólfur Magnússon of the University of Iceland. The outpouring of this vast volume was the first indication of an enormous transfer of energy taking place beneath the Eyjafjallajökull ice cap. Oddsson and his team determined that over 45 percent of the heat from the eruption was expended melting the ice, based on inferences of the outflowing steam, tephra, water, and other materials....

Read More

Tibetan Headwaters of the Yangtze Under Threat

Posted by on Jul 12, 2016 in All Posts, Featured Posts, News, Science, Uncategorized | 0 comments

Tibetan Headwaters of the Yangtze Under Threat

Spread the News:ShareThe glaciers which feed the “Yangtze River Source Region” (YRSR) are in the “most sensitive area to global warming” atop the Tibetan Plateau, according to a study led by the Institute of Tibetan Plateau Research. Nearly a quarter of the glacier coverage throughout the headwater region melted from 1970 through the late 2000s, as the Institute of Geographic Sciences and Natural Resources Research found.  Across China “glaciers will play a key role in determining river runoff” in the future, research led by Peking University determined. However, they projected that the nation’s glaciers will “suffer substantial reductions,” with over a quarter of glaciated regions potentially lost by 2050. By the end of the century, in the worst case scenario, as much as 67 percent of China’s glacier volume may completely “disappear.”   China’s water crisis The nation already faces crippling water crises. As of 2012, two-thirds of China’s 669 cities endured shortages and more than 40 percent of waterways were “severely polluted.”Additionally, 80 percent of its lakes were plagued  by eutrophication, and 300 million rural citizens had limited access to safe drinking water. In 2016, China’s Ministry of Water Resources announced that 80 percent of groundwater across the mainland — including  the Yangtze, Yellow, Huai and Hai Rivers’ catchments — was “unsafe for human contact.” To address these issues, China has implemented ambitious water schemes, designed to store and reroute billions of gallons of water from “China’s Water Tower,” the Tibetan Plateau, to thirsty northern provinces. The ‘South-North Water Diversion Project’ and the Three Gorges Dam are two of the best known (and most controversial) projects deployed to address China’s unfolding water crisis. Asia’s longest river — the Yangtze — sustains over 584 million people, and serves an economic zone which represents nearly 42 percent of China’s GDP (US$4.18 trillion), according to the Hong Kong-based non-profit China Water Risk. The operations within the catchment provide 40 percent of the nation’s electricity and73 percent of its hydropower. The fortunes of China have been built upon the banks of the Yangtze.   The Yangtze’s glaciers Climate change is having a dramatic effect on the freshwater stores in the Yangtze’s headwater region. In 2007, the State Key Laboratory of Cryospheric Sciences (SKLC) determined that between the 1970s and 1990s the local rate of warming more than doubled, from 0.9°F (0.5°C) per decade to 1.98°F (1.1°C) per decade. According to China’s Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), between 1961–2000 glacier melt contributions averaged 11 percent of the total runoff feeding the Yangtze — over 3 trillion gallons (1.13 billion m3). By 2013, research led by the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Hydro-Lab) indicated that glacier melt now only contributes 5-7 percent of the Yangtze’s annual flow. Chuancheng Zhao of Lanzhou University, and his colleagues, predicted that temperatures in the YRSR will have increased 5.4°F (3°C) by the end of the 21st Century. This would result in temperatures 9.18°F (5.1°C) above those observed in the 1970s. This pessimistic projection exceeded by Steve Birkinshaw of Newcastle University and his team in 2016. Their models predicted that if business continues as usual, the region could face a temperature increase of “more than (7.2°F) 4°C” by 2070, compared with pre-2010 conditions. This would be catastrophic for the YRSR’s glaciers, with severe consequences for all downstream inhabitants and operations. Li Xin of CAREERI projected that across China “glacier runoff will increase continuously from 2000 to 2030,” but will begin to decline after reaching ‘peak water’ by 2030. Shen Yongping and his colleagues project that, if temperatures rise 5.4°F (3°C) by 2100 as Zhao...

Read More