Posts by Holly Davison

Using Film to Reduce Risk on Volcanoes

Posted by on Jun 1, 2017 in Adaptation, All Posts, Featured Posts | 0 comments

Using Film to Reduce Risk on Volcanoes

Spread the News:ShareFor people to cope with environmental hazards, they need to understand threats – a key step that can lead to behavior change. A recent paper by Anna Hicks et al., published in the International Journal for Disaster Risk Reduction, describes the importance of communicating glacier hazards and other risks. The authors made videos and then assessed their effectiveness for risk communication in volcanically-active communities. The films were used to communicate findings from the Strengthening Resilience in Volcanic Areas (STREVA1) project, led by the University of East Anglia in the UK, in order to apply effective volcanic risk assessments. Hicks et al. selected two sites with histories of volcanic activity, Colombia and a Caribbean island, St. Vincent, as case studies for the videos. These sites were attractive for other reasons: St. Vincent has a high use of digital media, and Colombia has large at-risk populations across the entire country. As a result, film could be used to communicate across broad audiences in boith cases. St. Vincent has one prominent volcano called La Soufrière. La Soufrière comprises about a third of the island’s area. It last erupted in 1979, but the eruption that occurred in 1902 was much more devastating, killing around 1,500 people on the island. Colombia, on the other hand, has 57 volcanoes. Many of them are stratovolcanoes (over 4000 meters), and a large number are glacier-capped. Hicks et al. focused on the glaciated Nevado del Ruiz during the film-making process. Hicks et al. took a co-productive approach and made the intended audience the major focus of the films. The series of videos featured firsthand accounts from witnesses of previous eruptions and secondhand accounts shared by community elders with younger generations. The interviews were intended to create an emotional response from the viewers. The eruptions featured in the films occurred at least a generation ago, allowing Hicks et al. to explore how film can impact social memory. The series included reflections on eruptions that occurred in the past, and how to prepare for possible ones in the future. By making the videos for St. Vincent, over a year earlier than the series for Colombia, the authors learned the importance of the filming process and the final product in improving people’s knowledge of risks and behavior change. Each film was designed to increase awareness of eruptions, while also maintaining and strengthening social and cultural memory of the events. The films were screened in each community and then followed by in-person surveys. The films sought to dispel myths about the volcanoes and improve preparedness. The results of the survey indicated improvements in knowledge, as well as success at empowering people to act. For example, one of the participants in St. Vincent noted “the speed at which the flow can get to the Rabacca river and cut us off if we do not adhere to the early evacuation process.” As Hicks et al. describe in the paper, many of the attendees had never actively sought information on eruptions before and engaged for the first time during the film screening and consequent workshops. In the paper, Hicks et al. explain that risk communication “will have more success if it is rooted in the socio-cultural context in which the risk is understood.” Adopting concepts from David Cash, the information should be credible (believable and trusted) and salient (relevant). The authors chose film specifically because it is an effective way to communicate concepts or risks that are difficult to imagine or understand. Dr. Kerry Milch, a research associate at the Center for Research on Environmental Decisions (CRED) at Columbia University, explained to GlacierHub how film...

Read More

Don’t Step on the Crack at Petermann Glacier

Posted by on May 18, 2017 in All Posts, Featured Posts, News, Science | 0 comments

Don’t Step on the Crack at Petermann Glacier

Spread the News:ShareCracks in ice shelves have appeared in disaster movies as ominous signs of global warming. One memorable instance occurs in The Day After Tomorrow when a paleoclimatologist is drilling ice cores at the Larsen Ice Shelf. The shelf breaks apart, leading to a series of cataclysmic climate events that disrupt the North Atlantic Ocean circulation. In July, a real- life crack appeared at Petermann Glacier in Greenland and has been growing steadily ever since. Two scientists, Andreas Muenchow and Keith Nicholls, are investigating the crack and hypothesize that it is caused by an increase in air and ocean temperatures. Petermann Glacier connects the Greenland ice sheet to the Arctic Ocean at 81°N. It is approximately 43 miles long and nearly 10 miles wide. This is not the first crack or full break of ice at Petermann Glacier, according to a Washington Post article by Chris Mooney. Since 2010, entire slabs of the Petermann glacier have broken off. In fact, during two occasions, the glacier lost an area of ice six times the size of Manhattan, according to Mooney. This loss raises enormous concern because the glacier serves to slow down the flow of ice downhill from the Greenland ice sheet into the ocean. For this reason, experts call Petermann a “floodgate.” If the glacier that sits behind Petermann melts, it could raise sea levels by about a foot. A recent paper published in the Geophysical Research Letters describes this type of calving at Petermann as common. The authors explain that it is usually assumed that ocean-ice dynamics are not involved. However, evidence from the Pine Island Glacier in West Antarctica found that ocean forcing can play a role in the melting. Muenchow and Nicholls expect similar dynamics are occurring with Petermann Glacier. They have been on several expeditions to the glacier in order to measure ocean temperatures underneath the shelf itself. They want to see if rising ocean temperatures are also detrimental to the glacier and causing the melting from below. If warm ocean water were melting the base of the glacier, it would only accelerate the destruction of Petermann. While it is extremely difficult to know definitively, they hypothesize Petermann’s river and the channel beneath it are playing a role in the melting. Data from 2015 and 2016 demonstrates that the temperatures of the warm Atlantic layer in the ocean have increased. With both air and ocean temperatures getting warmer, it is unclear how much longer Petermann Glacier will be intact, leaving frightening implications for the melting of the enormous glacier behind it. The crack in the Petermann Glacier and the possible ensuing events show that news from the ice can sometimes be just as scary as the scenes in disaster movies. Spread the...

Read More

Photo Friday: Peder Balke’s Mountain Landscapes

Posted by on May 12, 2017 in All Posts, Featured Posts, Images | 0 comments

Photo Friday: Peder Balke’s Mountain Landscapes

Spread the News:SharePeder Balke (1804 – 1887) is often known as the “Painter of Northern Light.” A painter firmly rooted in the Romanticism movement, which flourished from 1800 to the 1860s, his landscapes and seascapes portray the power and majesty of nature. His work depicts the wildness of Norwegian seascapes and the potential nature has to destroy. Balke’s talent has recently been rediscovered by collectors and museums alike. A collection of his work is on display at the Metropolitan Museum of Art in New York City until July 9, some of the paintings featuring depictions of glaciers.         Spread the...

Read More

Meltdown in Canadian Ice Core Facility

Posted by on May 4, 2017 in All Posts, Featured Posts, News | 1 comment

Meltdown in Canadian Ice Core Facility

Spread the News:ShareThe Canadian Ice Core Archive in Edmonton, run by the University of Alberta, recently lost almost 13 percent of their ice cores in a perfect storm of system and equipment failures. The freezer containing thousands of precious ice core samples malfunctioned one weekend in April and the alert that was meant to sound if the freezer failed also faulted. To make matters worse, the system then tried to correct itself, which meant it blew hot air into the room, accelerating the melting of the cores. The temperature in the room rose so high that it set off the fire alarm in the building. Ice cores at the Canadian Ice Core Archive are typically kept at -37°C. But over the weekend, temperatures increased to upwards of 40°C, leaving inches of water on the floor by Monday morning. In the meltdown, the archive lost some of its oldest and most precious ice cores from Northern Canada that glaciologists have been collecting since the 1970s. In total, 4,000 ice core samples were destroyed overnight, sending ripples of concern through the science community. 'Invaluable' ancient Arctic ice cores damaged by freezer failure at University of Alberta. Temperatures reach 40C. https://t.co/ieDZnsDuQF — William Colgan (@GlacierBytes) April 7, 2017 The lost ice cores held 22,000 years of data within their layers and came from such diverse locations as Mount Logan, the tallest peak in Canada, and Baffin Island’s Penny Ice Cap, among other locations. It is no surprise that climate scientists and glaciologists value ice core data for what it can tell us about past climate. Glaciers start as layers of snow, which slowly accumulates, forming ice. Dust, pollen, and bubbles of trapped air in each layer of snow becomes a part of the ice. Ice cores are drilled samples of these layers, each sample telling a story of historical atmospheric and temperature conditions. Thus, storage of ice cores in repositories is extremely important. Replacing the 4,000 lost ice cores in Edmonton is essentially out of the question. Each sample would cost upwards of $1 million dollars to replace and presents massive logistical issues in obtaining new ones due to the remote location of the Arctic. The process of drilling ice cores is extremely time consuming and technically demanding. Ice cores are either drilled with a thermal or mechanical drill, and samples range from one to six meters in length.  It seems the only way forward from this ice core catastrophe is to ensure that the Canadian Ice Core Archive does not have another failure. This involves sharing lessons learned from this incident and other ice core repositories. In times like these, the last thing the world needs is more lost climate data. Fortunately, the archive’s oldest ice from the last continental ice sheet was not in the malfunctioning freezer, a small wrinkle in an otherwise tragic tale.   Spread the...

Read More

Roundup: GLOFs, Iron, and Soil Stability

Posted by on Apr 24, 2017 in All Posts, Featured Posts, Roundup | 0 comments

Roundup: GLOFs, Iron, and Soil Stability

Spread the News:ShareRoundup: GLOFs, Iron, and Soil   Observations of a GLOF near Mt. Everest From The Cryosphere: “Glacier outburst floods with origins from Lhotse Glacier, located in the Everest region of Nepal, occurred on 25 May 2015 and 12 June 2016. The most recent event was witnessed by investigators, which provided unique insights into the magnitude, source, and triggering mechanism of the flood. The field assessment and satellite imagery analysis following the event revealed that most of the flood water was stored englacially and that the flood was likely triggered by dam failure.” Read more about the GLOF events in Nepal here.   Transfer of Iron to the Antarctic From Nature: “Iron supplied by glacial weathering results in pronounced hotspots of biological production in an otherwise iron-limited Southern Ocean Ecosystem. However, glacial iron inputs are thought to be dominated by icebergs. Here we show that surface runoff from three island groups of the maritime Antarctic exports more filterable than icebergs. Glacier-fed streams also export more acid-soluble iron associated with suspended sediment than icebergs. Significant fluxes of filterable and sediment-derived iron are therefore likely to be delivered by runoff from the Antarctic continent. Although estuarine removal processes will greatly reduce their availability to coastal ecosystems, our results clearly indicate that riverine iron fluxes need to be accounted for as the volume of Antarctic melt increases in response to 21st century climate change.” Learn more about iron transfer here.   The Role of Vegetation in Alpine Soil Stability From International Soil and Water Conservation Research: “One fifth of the world’s population is living in mountains or in their surrounding areas. This anthropogenic pressure continues to grow with the increasing number of settlements, especially in areas connected to touristic activities, such as the Italian Alps. The process of soil formation on high mountains is particularly slow and these soils are particularly vulnerable to soil degradation. In alpine regions, extreme meteorological events are increasingly frequent due to climate change, speeding up the process of soil degradation and increasing the number of severe erosion processes, shallow landslides and debris flows. Vegetation cover plays a crucial role in the stabilization of mountain soils thereby reducing the risk of natural hazards effecting downslope areas.” Read more about soil stability here. Spread the...

Read More