Posts by Brittany Watts

Photo of the Week: Glaciers and Clouds

Posted by on Apr 11, 2015 in All Posts, Featured Posts, Images, Uncategorized | 0 comments

Photo of the Week: Glaciers and Clouds

Spread the News:ShareClouds can be formed when air masses travel up mountains and the water in them condenses. Therefore, since glaciers are usually located on the tops of mountains, the pristine visual of a cloud nestled with a glacier is not an unusual site. Dirty clouds  can affect the health and longevity of glaciers. However, let’s ignore that reality and end our week with beautiful pictures of fluffy, inviting clouds on glaciers!   Rising Damp Canton of Valais A dombrowski Richard Allaway Mont Blanc Massif AD XD mag Jostedalsbreen glacier     Photo Friday highlights photo essays and collections from areas with glaciers. If you have photos you’d like to share, let us know in the comments, by Twitter @glacierhub or email us at glacierhub@gmail.com.  Spread the...

Read More

Post-Glacial Soils’ Star Role in Methane Cycle

Posted by on Apr 8, 2015 in All Posts, Featured Posts, Science | 0 comments

Post-Glacial Soils’ Star Role in Methane Cycle

Spread the News:ShareThe role of woodland soils in the terrestrial uptake of methane is common knowledge for most earth scientists; however, the link between the new soils, which emerge after glacier retreat, and methane uptake was only discovered in 2003. Now, a new study has brought more gravity to this finding by exposing the surprising efficiency of this process. The results are significant, considering methane is a very potent greenhouse gas. Conclusions from this study prove that glacier forelands, or the regions of land that lie at the edge of a glacier and are newly ice-free, could play a role in mitigating climate change. The new study, led by doctoral candidate Eleonora Chiri at the ETH Zurich, or the Swiss Federal Institute of Technology, aimed to discover which components of glacier forefield soils determine its performance as a terrestrial sink for atmospheric methane. To answer this question, researchers collected between 12 and 15 samples of aerobic methane-oxidizing bacteria–organisms which use methane as their only source of carbon and energy–from multiple strategic locations between the Damma and Griessfirn glaciers in the Canton of Uri, Switzerland. These two glaciers were chosen because of their difference in bedrock type. Samples were assessed for four attributes: soil-atmosphere methane flux, methane oxidation activity, methane-oxidizing bacteria abundance, and bacterial variation. These measures helped the scientists to understand what types of bacteria thrive in the sample regions and how their activity affects the rate of uptake of methane in the various sampling locations. Soils collected ranged from 6 to 120 years old. The data revealed four key trends. First of all, methane-oxidizing bacteria composition was the only factor that varied based on location; the most important influence on this factor was bedrock type. Oxidation activity was dependent on the water content of the soil. It was initially greatest in deep layers of soil, but oxidation towards the surface became more pronounced as the soil matured. Most significantly, though, researchers found that although the amount of methane from the air that was consumed by the bacteria increased with the age of the soil, a robust amount of uptake could be established as quickly as a few years after the soil became ice-free, and could reach full maturity in about a decade. Contrary to the belief that an area of glacier forefield soil could not uptake methane until it reached 80 years of maturity, the authors concluded  “alpine glacier-forefield soils investigated in this study acted as a sink for atmospheric [methane]already within <10 yr after glacial retreat.” This research is critical to understanding the full picture of glacial retreat. On one hand, many scientists are concerned that thawing Arctic lakes will cause more methane to be released into the atmosphere. This climate change feedback loop could have catastrophic effects, since methane is a greenhouse gas 21 times more potent than carbon dioxide. Therefore, the role of methane uptake in glacier forefields could serve as a buffer for this new source of methane emissions. In addition to the biological significance, the findings from this research have implications for climate change policy. According to the researchers, “young mountainous soils have the potential to consume substantial amounts of atmospheric methane, and should be incorporated into future estimates of global soil uptake.” Although prior mitigation policy has often focused on the role of carbon dioxide in mitigation strategies, the role of soil uptake from glacier forefields opens up a new opportunity for policymakers to claim new sources of climate change offsets. For example, in cities that have implemented greenhouse gas cap-and-trade programs, companies are allowed conservation-based forest management as a carbon offset option. Further research may indicate that the preservation of...

Read More

Round Up: Melting in Alaska, Biking Madness, Glacier Art

Posted by on Apr 6, 2015 in All Posts, Featured Posts, Images, News | 0 comments

Round Up: Melting in Alaska, Biking Madness, Glacier Art

Spread the News:ShareGulf of Alaska Experiencing Large Flushes of Glacial Melt Water “The collective freshwater discharge of this region is more than four times greater than the mighty Yukon River of Alaska and Canada, and half again as much as the Mississippi River. While scientists had indeed noticed this runoff, until now they had no idea the magnitude of its impact.” Read more at Nature World News.   Intense Bike Marathoners Race through Allalin Glacier  “Each year hundreds of dedicated mountain bikers take part in an annual race in Saas Fee. However, the fact that the race takes place at the beginning of March and the course is a glacier means that the Saas Fee Glacier Downhill is no ordinary mountain bike race…” Read more at Ski Total.   Michèle Noach is Making Big Waves as a Pioneer in Glacier Art “Michèle Noach was born in Australia and lived in The Netherlands & the US before her family settled in London in the last hours of the 1960s. She kept pet mice, listened to the Velvet Underground and The Damned and gazed at a lot of George Herriman, Jean Dubuffet, André François and Ronald Searle. Keen on code-breaking, she has been a cryptic crossword compiler, sign language interpreter and arts’ writer.” See her work here.       Spread the...

Read More

Health of Bees and Glaciers Linked

Posted by on Mar 18, 2015 in All Posts, Featured Posts, Science, Uncategorized | 0 comments

Health of Bees and Glaciers Linked

Spread the News:ShareThe Tibetan plateau, the earth’s highest and largest plateau, sometimes called the “Roof of the World,”  and its immediately surrounding mountains contain the greatest diversity of bumblebee species in the globe. But, these little-studied populations may be threatened by climate change, new research shows. A paper, entitled “Bumblebees, climate and glaciers across the Tibetan plateau (Apidae: Bombus Latreille),” published in the journal Systematics and Biodiversity in January, finds that if the many of glaciers in the Tibetan plateau melt without replenishing, they could dry up the summer streams that nourish the plants and flowers on which many of these bumblebees rely for food. It’s the first time glacier melt has been identified as a potential threat to bumblebees, even as scientists around the world race to understand recent declines in bumblebee populations and to devise strategies to revive them. The research was conducted by scientists from China and London, who set out to understand the relationship between climate and bee species diversity in the Tibetan plateau. The researchers defined the Tibetan plateau broadly to include portions of China, Nepal, Bhutan, India, and Pakistan, a region about one third the size of the United States. To understand regional species variations, they collected data on the various species found and mapped them across the region. They then analyzed climate variables against variation in bee species composition. The researchers discovered that the richness of the social bumblebee species in the alpine zone of the Qinghai-Tibetan Plateau is greater than that of any other alpine region of the world. The area contains 44 species—by comparison, all of South America holds 24 species. Further, they found three principal groups of fauna, which can be distinguished by their constituent species: the Himalayan fauna of the south with many endemic species, fauna of the east in the Oriental region, and Palaearctic fauna of the north. The research team, led by Paul Williams, was also able to find some distinct relationships between the types of bees populating an area and climate variables. The primary factor linked to bee variation was differences in precipitation across the region, which divided the study area into two parts— the dry west and north and the wetter east and south. When finalizing the data, there was one thing the researchers couldn’t figure out: why were bee populations so robust in the arid northern and western areas, such as Ladakh and Zanskar, contrary to what was expected due to the aridity in these areas? According to the study, “these small western and northern ‘oases’ appear to be strongly dependent on narrowly localized irrigation by continuous summer streams…often fed by meltwater from permanent glaciers.” However, these glaciers are believed to be melting rapidly due to climate change, the researchers note. Therefore, the rapid melt of the glaciers is a potentially serious conservation concern for the bumblebee species that thrive in these areas. The impact of melting glaciers on bee populations most directly relates to the bee fauna in the north and west of the Tibetan Plateau; however, this connection could have impacts for populations across the region. The researchers conclude, “interruption of stream flow could result in sudden, complete and permanent collapse of bumblebee populations throughout these valleys.” This ecological disruption could affect ecosystems in unknown and irreversible ways. Further, the decline of bee species in any part of the globe is significant because bees are one of the most hardworking, irreplaceable species on the planet. According to Marla Spivak, American entomologist and MacArthur Fellow, over one third of the world’s crops are dependent on bee pollination. In the recent decades, bumblebee populations have faced many perils...

Read More

Girls Breaking Ground on Ice

Posted by on Mar 4, 2015 in All Posts, Communities, Experiences, Featured Posts, News | 0 comments

Girls Breaking Ground on Ice

Spread the News:ShareAs a student, I had no idea that I ever wanted to study anything related to science- much less the “hard” sciences. Often, I was pointed in the direction of social science because of my writing ability and creativity. Although my high school days weren’t long ago, this experience is common among young women due to archaic stereotypes that have yet to be dismantled. Luckily, there are some female professionals in the hard sciences, such as Dr. Erin Pettit, glaciologist and founder of the Girls on Ice Program, who are trying new approaches to open corridors in science for young ladies.   Sponsored by the University of Alaska Fairbanks, Girls on Ice is a free science, mountaineering, and art wilderness program for young women ages 16-18. Each year, two teams of nine young women and three instructors spend twelve days on unforgettable expeditions: one trip explores Mount Baker, an ice-covered volcano in Washington, and the other trip allows the young women to experience the majesty of Alaska’s Gulkana Glacier. The young women selected for the teams explore these unique landscapes with professional mountaineers, ecologists, artists, and glaciologists, and all of the instructors are women.   The program stretches the young women mentally and physically by prompting them to observe, to question, and to experiment while trekking through rough terrain. Although the focus is scientific research, the physical elements cannot be overlooked. “We don’t baby them. They have to set up tents, cook, do everything,” declared Dr. Pettit to the National Science Teachers Association. Over the course of the expedition, the girls are challenged to design and conduct a pinnacle experiment about the environment; during the 2009 expedition, one participant used time-lapse imagery to correlate local weather and glacial melt. She found that air temperature and sunshine have a direct effect on the melt rates of ice and snow cover, thus affecting the pace of water-flow in glacial streams. After the expedition, the young women are invited to synthesize their field research and present it to a public audience, which sometimes includes members from the local geoscience community.     The young women on the Girls on Ice team gain both physical and intellectual confidence, leadership skills, and inspiration for future achievement. Yet, along with stimulating the minds of the young women, the program has benefits for society as it helps to close the gap between the numbers of women and men involved in science occupations. According to National Geographic, women make up a meager 26% of the individuals devoted to science, technology, engineering, and math occupations; although that number has been increasing slightly over the years, “gender bias has affected research outcomes.” Programs like Girls on Ice help to ameliorate these injustices by providing unique opportunities for girls to experience the grandeur and marvel inherent in scientific discovery. As stated by one of the participants, “I am inspired to do anything! In the van ride back I was looking out the window at the amazing scenery and the bright blue sky and I felt so great and excited for life.”   Dr. Pettit stated in her feature in Smithsonian, “My goal is not to turn these girls into scientists. My goal is to provide the kind of critical-thinking skills that are necessary for science-and for everything else we do in life.” The aim is to inspire these young women to become not just scientists, but also “future teachers, journalists, lawyers, and businesswomen who are advocates for the scientific process.” Therefore, this program and other field science experiences for high school students offer a promising outlook on the importance of preserving glaciers...

Read More