Posts by Anna LoPresti

Education Fuels Disaster Resiliency in Northern India

Posted by on Jul 5, 2016 in Adaptation, All Posts, Communities, Featured Posts, Policy and Economics | 0 comments

Education Fuels Disaster Resiliency in Northern India

Spread the News:ShareIn the Northern Indian states of Jammu and Kashmir, accelerated glacier melting in the Ladakh region has made communities increasingly vulnerable to glacier lake outburst floods, or GLOFs. These unpredictable natural disasters occur when glacier meltwater creates lakes at high elevations, which have the potential to overflow and cascade down the steep slopes of mountains. As temperatures in the Himalayan region continue to climb due to climate change, the number of glacier lakes in Ladakh has surged to over 266 as of 2014, making outburst floods an acute risk in the region. While engineering and infrastructure projects can decrease the chances of an outburst flood, many remote, high altitude communities in India do not have the economic means or technology to build expensive mitigation structures that could halt the effects of GLOFs. However, a recent study conducted by Naho Ikeda, Chiyuki Narama, and Sonam Gyalson found that community-based measures like engagement and education may provide an alternative path to increased GLOF resiliency in Ladakh. The Switzerland-based International Mountain Society (IMS) conducted the study in India, published earlier this year in the journal Mountain Research and Development. The research team developed a series of community workshops in Domkhar, a village in Ladakh that is a high risk community with at least 13 glacier lakes located in the watershed. The idea was to determine whether education and outreach were viable tools for protecting the villagers from glacier lake outburst floods. The workshop, held in May of 2012, brought together 120 community members, scientists, and translators to discuss a wide range of topics on glacier lake outburst floods. Over the course of four sessions, Ikeda and her colleagues discussed their findings from a 2010 field survey of local glacier lakes and distributed an informational booklet written in Ladakhi, the predominant local language. The workshop also gave researchers insight into the community members’ cultural practices, religious beliefs, and current understanding of the impacts of climate change on their local environment. The researchers’ concluded from their time in Domkhar that community members had a mixed level of knowledge of GLOFs and their associated risks. According to the report, community members expressed an understanding of glacier lakes and GLOFs that relied on a combination of their personal experiences with nature and their religious beliefs. One group of villagers explained that sacred animals, including horses and sheep, cause outburst floods when the community angers them. Others mentioned that the lakes are sacred because the Tibetan Buddhist temples throughout the region are reflected on the surface of the water. Religion was predominantly mentioned by older members of the community rather than younger villagers, reflecting the fact that cultural identity has played a large role in the Ladakhi community’s understanding of the natural world, although that notion may be shifting with younger generations. A larger number of workshop participants also discussed their observations of nature, including the animal species and local geography surrounding the glacier lakes. However, individual observations were not always accurate, as participants did not know how many glacier lakes were within the watershed or of the emergence of a new glacier lake in the area formed in 2011. Over the course of the day, community members displayed a curiosity and increasing knowledge of GLOFs that led to the adoption of a 7-point resolution to respond to a glacier lake outburst flood. The resolution included the development of a community-based GLOF monitoring committee, establishment of an evacuation plan, and discouraging construction near stream banks. While these measures require time and effort on the part of Domkhar residents, new technology and financial support are not necessary for...

Read More

Study shows glacial melting changes mountain lake ecology

Posted by on Jun 28, 2016 in All Posts, Featured Posts, Science | 0 comments

Study shows glacial melting changes mountain lake ecology

Spread the News:ShareIn the Rocky Mountains, researchers have been studying a pair of lakes–Jasper and Albino. While they are similar in size, location, and depth, there is one important difference: Jasper Lake is fed by glacier meltwater while Albino Lake is fed by snow. A report published in May reveals that this small difference has had a dramatic impact on the biology and chemistry of the lake itself, indicating that water source plays a much larger role in the ecological health of mountain lakes than previously thought. Mountain lakes are an important source of regional water in the western United States, and are known for their historically high levels of biodiversity. Recently, these lakes have seen rapid changes which sparked concern from the scientific community. Last month the California-based Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT) addressed the need for research on mountain lakes by publishing a special feature of Mountain Views, their biannual report compiling recent research on western United States mountains, that focuses exclusively on mountain lakes. The ten featured research articles all point to the importance of alpine lake conservation and investigate the impacts of climate change and other anthropogenic influences on regional ecology and environmental health. One article— “Effects of Glacier Meltwater on the Algal Sedimentary Record of an Alpine Lake in the Central U.S. Rocky Mountains”— studied glacier-fed and snow-fed lakes and found drastic differences in the chemical compositions and species ecology between the two. The researchers, Krista Slemmons of the University of Wisconsin, Stevens Point, and Jasmine Saros of the University of Maine chose two alpine lakes in the Beartooth Mountains, Jasper and Albino, which are physically and geographically similar. However, Jasper Lake is fed by a glacier meltwater, while Albino Lake is only fed by snowmelt. To determine differences in the lakes’ histories, sediment cores were taken from the bottom of the Jasper and Albino. Over time, organisms and nutrients accumulate on the lakebed and gradually build up as sediment in bodies of water. The layers of the core therefore tell a story about the history of the life within the lakes. By analyzing the sediment cores, the researchers were able to look back through time and see how the type of water feeding the lakes has led to differences in life history and biogeochemical cycling. Within the Jasper core, researchers found high levels of plankton species that thrive in high nitrogen conditions, indicating that the lake has had higher nitrogen levels than Albino Lake over the past 3,000 years, with particularly high levels corresponding to periods of high glacial melting, most notably the 20th century. Today, glacier-fed Jasper Lake has approximately 63 times more nitrogen than snow-fed Albino Lake. It is the high concentrations of nitrogen in the glacial meltwater that has led to the differences between the lakes. This trend will continue as glacier melting accelerates with climbing temperatures. While nitrogen is an important nutrient, and often limited in alpine lakes, it is possible to have too much of a good thing. In Jasper Lake, the sediment cores also indicated that species richness, or the number of different types of species present in an ecosystem, was lower than in the nitrogen-limited Albino Lake. These findings suggest that a high influx of glacial meltwater into lakes may lead to eutrophication. Eutrophication is a type of water pollution that occurs when high levels of nitrogen cause plant and algae to grow excessively. This phenomenon, known as an algal bloom, blocks sunlight from penetrating the water column, decreases the oxygen levels in the water, and can harm other species in the...

Read More

Photo Friday: Zackenberg Research Station

Posted by on Jun 17, 2016 in All Posts, Featured Posts, Images | 0 comments

Photo Friday: Zackenberg Research Station

Spread the News:ShareZackenberg Ecological Research Operation (ZERO), located in northeast Greenland, is a fieldwork station for high Arctic ecosystems. It is operated by the  Department of Bioscience at Aarhus University in Denmark. This week, enjoy photos from the Zackenberg station and witness scenes in the life of field researchers in Greenland. The station is remote and small, accommodating a maximum of 24 people at a time, but conducts important research on ecosystem structure and the impacts of climate change on the region. The station collects and monitors climate data through the ClimateBasis Program. Among the many important research projects run at the station is the GlacioBasis Program, which has been monitoring the Olsen Ice Cap and tracking its mass balance changes since 2008. The team also runs the BioBasis Program, which tracks Arctic species and biodiversity across the icy terrain. Spread the...

Read More

Transnational Solutions to Preserve Yak Populations in Himalayas

Posted by on Jun 14, 2016 in Adaptation, All Posts, Featured Posts, Policy and Economics | 1 comment

Transnational Solutions to Preserve Yak Populations in Himalayas

Spread the News:ShareIn the extreme altitudes and harsh conditions of the Hindu Kush Himalayan Region, yak herding is more than a way of life–it is a way to survive. Environmental change currently threatens yak populations in the region, and undermines the livelihoods of the communities they support. However, a recent report raises hopes of protecting yaks through international cooperation within the region. The International Center for Integrated Mountain Development (ICIMOD) released a special publication in May on yaks in the Hindu Kush Himalayan region, also known as HKH. The report, “Yak on the Move: Transboundary Challenges and Opportunities for Yak Raising in a Changing Hindu Kush Himalayan Region,” includes a compilation of studies and presentations from the 5th International Conference on Yak held in Lanzhou that suggest international, rather than local, policy decisions may be the key to preserving yak populations. Despite the species’ importance within the region, there is a significant lack of scientific research necessary to address the growing challenges posed by climate change. This report is an important first step in filling the gap of knowledge about yak herding and management. As David Molden, Director General of the International Center for Integrated Mountain Development, writes in the report, ‘The articles clearly indicate the need to develop a comprehensive understanding of the ecological, socioeconomic, and cultural role of yak, and its implications for biodiversity conservation and sustainable development at a local, regional, and even global scale.” The importance of yaks is highlighted by the FAO Regional Office for Asia and the Pacific, which states that yaks have played an important role in HKH life from Tibetan Buddhist ceremonies and economic activity, to preserving ecological diversity of high altitude rangelands through grazing patterns.   This report is the second publication on yaks compiled by ICIMOD following a 1996 report co-edited by United Nations’ Food and Agricultural Organization. It aims to bring multiple stakeholders together to discuss the growing challenges faced by pastoral communities in the high-altitude and glacier-covered ecosystems in the HKH region. Yak on the Move is representative of ICIMOD’s transnational approach to conservation and policy, including research on a range of Hindu Kush Himalayan member countries including Afghanistan, Pakistan, Nepal, Bhutan, India, and China. The report explores yak herding and challenges, policy and institutional arrangements, and yak cross-breeding practices. The analysis as a whole offers the case for developing international solutions to the many challenges faced by yak-herders—environmental change among the most pressing. The Hindu Kush Himalayan region, often referred to as the “Third Pole,” holds 30 percent of the world’s glaciers and is one of the most vulnerable regions to climate change and glacial melting. Temperature increases are more pronounced at higher elevations, accelerating glacier retreat in the region and impacting yaks and pastoral communities. Yaks’ woolly undercoat makes them well-adapted for the intense cold of Himalayan winters, but also puts them at acute risk if temperatures increase. While struggling to protect their livelihoods, herders are displaced and forced to move to increasingly harsh landscapes and remote altitudes. Some of climate change’s negative impacts on yak, including habitat reduction, are outlined in “Coping with Borders: Yak Raising in Transboundary Landscapes of the Hindu Kush Himalayan Region,” the first article in the report. When yaks are only able to graze in small areas, the rangeland cannot recover. The piece notes that pastoral communities have been forced to move to increasingly higher elevations, causing a cycle of further land use change and degradation. However, rising temperatures are not the only threat to high-altitude ecosystems and the communities that depend on them. Forest degradation, human-wildlife conflict and illegal trade of rare...

Read More

Roundup: Teaching Tourists, Landing Safely, Watching Cracks

Posted by on Jun 13, 2016 in All Posts, Featured Posts, News | 0 comments

Roundup: Teaching Tourists, Landing Safely, Watching Cracks

Spread the News:ShareEach week, we highlight three stories from the forefront of glacier news. Climate Change Education for Mendenhall Glacier Tourists From KTOO: “On a busy summer day, thousands of people — mostly cruise ship passengers — visit Juneau’s Mendenhall Glacier. The U.S. Forest Service wants those tourists to take in the dramatic views, but also consider why the glacier is shrinking. Visitor center director John Neary is making it his personal mission. That means trying to make the message stick — long after the tourists are gone…“It became our central topic really just in the last few years,” said Neary. He’s not afraid to admit he’s on a mission. He wants the more than 500,000 people who visit the glacier each year to know that it’s rapidly retreating due to climate change, and the 18 interpreters who work for him are prepared to talk about it.” More on Mendenhall here. Pemberton Icefield Glacier Breaks the Fall of a Crash-Landing in Canada From Weather.com: “‘We tried to accelerate — that was the end of the valley, like cul de sac.’ Jedynakiewicz. told the CBC . ‘I say, ‘Full power! Full power!’ But the plane doesn’t respond. I checked in the last second, the speed it was 40 miles [per hour] when [we made] impact with the ice. It was a soft landing, soft like on a pillow. Believe me.’ The impact knocked out the plane’s radio, Toronto Metro reports, but left the plane almost undamaged and the three men unhurt. ‘I think the wing tips only missed the rock pile by about a foot,’ Hannah told the Metro. There was rocks on one side and a waterfall right in front of us and we jumped over the waterfall (to reach the glacier). So it was touch and go all right. It was a miracle. First thing was say, ‘Oh, God thank you we are alive,’” Jedynakiewicz told the CBC. ‘Not even scratch can you imagine? Three of us.’” Learn more about the emergency landing here. Greenland Glacier Becoming Increasingly Unstable From Albany Daily Star: “A glacier in northeast Greenland that holds enough water to raise global sea levels by more than 18 inches has come unmoored from a stabilizing sill and is crumbling into the North Atlantic Ocean. Losing mass at a rate of 5 billion tons per year, glacier Zachariae Isstrom entered a phase of accelerated retreat in 2012, according to findings published in the current issue of Science. “North Greenland glaciers are changing rapidly,” said lead author Jeremie Mouginot, an associate project scientist in the Department of Earth System Science at the University of California, Irvine. “The shape and dynamics of Zachariae Isstrom have changed dramatically over the last few years. The glacier is now breaking up and calving high volumes of icebergs into the ocean, which will result in rising sea levels for decades to come.” The research team – including scientists from NASA’s Jet Propulsion Laboratory and the University of Kansas – used data from aerial surveys conducted by NASA’s Operation IceBridge and satellite-based observations acquired by multiple international space agencies (NASA, ESA, CSA, DLR, JAXA and ASI) coordinated by the Polar Space Task Group.” For more, visit the Albany Daily Star’s Report. Spread the...

Read More