Roundup: Rock Glaciers, Ice Tongues and Flood Warnings

Roundup: Rock Glaciers, Floating Glaciers, and Flood Warnings

Ecology of Active Rock Glaciers

From Boreas: “Active rock glaciers are periglacial landforms (areas that lie adjacent to a glacier or ice sheet that freeze and thaw) consisting of coarse debris with interstitial ice (ice formed in the narrow space between rocks and sediment) or ice-core. Recent studies showed that such landforms are able to support plant and arthropod life and could act as warm-stage refugia for cold-adapted species due to their microclimate features and thermal inertia. However, integrated research comparing active rock glaciers with surrounding landforms to outline their ecological peculiarities is still scarce… Our data show remarkable differences between stable slopes and unstable landforms as a whole, while few differences occur between active scree slopes and active rock glaciers: such landforms show similar soil features but different ground surface temperatures (lower on active rock glaciers) and different occurrence of cold-adapted species (more frequent/abundant on active rock glaciers)… The role of active rock glaciers as potential warm-stage refugia for cold-adapted species is supported by our data; however, at least in the European Alps, their role in this may be less important than that of debris-covered glaciers, which are able to host cold-adapted species even below the climatic tree line.”

Read more about the role of active rock glaciers as potential warm-stage refugia here:

Rock glaciers in the European Alps (source: M Barton / Flickr).
Rock glaciers in the European Alps (source: M Barton/Flickr).

 

Fluid-Ice Structure Interaction of the Drygalski Ice Tongue

From UTAS: “The Drygalski Ice Tongue (DIT) is the largest floating glacier in Antarctica, extending approximately 120km into McMurdo Sound, and exhibits a significant influence upon the prevailing northward current, as the ice draft (measurement of ice thickness below the waterline) of the majority of the DIT is greater than the depth of the observed well-mixed surface layer. This influence is difficult to characterize using conventional methods such as in-situ LADCP (Lowered Acoustic Doppler Current Profiler) measurements, vertically collected profiles or long-term moorings as these are generally relatively spatially sparse datasets. In order to better relate measurements across the entire region of influence of the DIT region, a set of Computational Fluid Dynamics simulations (uses numerical analysis to analyze fluid flows) were conducted using a generalized topography of a mid-span transect of the DIT… Numerical modeling of environmental flows around ice structures advances the knowledge of the fluid dynamics of the system in not only the region surrounding the DIT but also provides a clearer insight into fluid-ice structure interactions and heat flux in the system. This may lead to a better understanding of the long-term fate of floating glaciers.”

Learn more about fluid-ice structure interactions here:

Drygalski ice tonguet (source: cohnveno / Flickr).
Drygalski ice tonguet (source: cohnveno/Flickr).

 

Flood Early Warning Systems (EWSs) in Bhutan

From ICIMOD: “Bhutan experiences frequent hydrometeorological disasters. In terms of relative exposure to flood risk as a percentage of population, Bhutan ranks fourth highest in the Asia-Pacific region, with 1.7% of its total population exposed to flood risk. It is likely that climate change will increase the frequency and severity of flood disasters in Bhutan. Inequalities in society are often amplified at the times of disaster and people living in poverty, especially women, the elderly, and children, are particularly vulnerable to flood hazards. Timely and reliable flood forecasting and early warnings that consider the needs of both women and men can contribute to saving lives and property. Early warning systems (EWSs) that are people-centered, accurate, timely, and understandable to communities at risk and that recommend the appropriate action to be taken by vulnerable communities can save people more effectively. To improve the understanding of existing early warning systems (EWSs) in the region and their effectiveness, ICIMOD has conducted an assessment of flood EWS in four countries (Bangladesh, Bhutan, Nepal, and Pakistan) from a gendered perspective. The objective is to support the development of timely, reliable, and effective systems that can save lives and livelihoods.”

Read more about flood early warning systems in Bhutan here:

UNDP Bhutan GOLF Thorthormi lake workers (source: UNDP / Flickr).
UNDP Bhutan GOLF Thorthormi lake workers (source: UNDP/Flickr).
Please follow, share and like us:

Share your thoughts