Roundup: Irrigation, Monitoring, and Tidewater

Evolution of Socio-hydrological Interactions in the Karakoram 

Hunza People (Source: Jordi Boixareu/Flickr)
Hunza People (Source: Jordi Boixareu/Flickr)

“Based on three case studies, this paper describes and analyzes the structure and dynamics of irrigation systems in Upper Hunza, located in the western Karakoram, Pakistan. In these deeply incised and arid valleys, glacier and snow melt-water are the primary water sources for agricultural production. The study shows how glacio-fluvial dynamics impact upon irrigation systems and land use practices, and how, in turn, local communities adapt to these changing conditions: framed here as socio-hydrological interactions. A combined methodological approach, including field observations, interviews, mapping and remote sensing analysis, was used to trace historical and recent changes in irrigation networks and land use patterns.”

Read more about this paper.

 

Glacier Dynamics Monitoring in Kyrgyzstan

Inylchek Glacier Source: Oleg Brovko/Flickr)
Inylchek Glacier (Source: Oleg Brovko/Flickr)

“The German Research Centre for Geosciences (GFZ, Potsdam, Germany) and the Central-Asian Institute for Applied Geosciences (CAIAG, Bishkek, Kyrgyzstan) jointly established the Global Change Observatory “Gottfried Merzbacher” at the Inylchek Glacier in eastern Kyrgyzstan which is one of the largest non-polar glaciers of the world and consists of two glacier streams. The flow of melt-water from the northern tributary forms a lake (Lake Merzbacher) that is dammed by the calving ice front of the southern Inylchek Glacier. At least once a year a glacial lake outburst flood (GLOF) occurs and the complete water of the Lake Merzbacher drains through sub-glacial channels. To monitor the glacier dynamics including the post-drainage ice dam response, a small network of remotely operated multi-parameter stations (ROMPS) was installed at different locations at the glacier.”

Read more about this paper.

 

The Largest Non-polar Tidewater Glacier in Alaska

Hubbard Glacier Source: Robert Raines/Flickr)
Hubbard Glacier (Source: Robert Raines/Flickr)

“Hubbard Glacier, located in southeast Alaska, is the world’s largest non-polar tidewater glacier. It has been steadily advancing since it was first mapped in 1895; occasionally, the advance creates an ice or sediment dam that blocks a tributary fjord (Russell Fiord). The sustained advance raises the probability of long-term closure in the near-future, which will strongly impact the ecosystem of Russell Fiord and the nearby community of Yakutat. Here, we examine a 43-year record of flow speeds and terminus position to understand the large-scale dynamics of Hubbard Glacier. Our long-term record shows that the rate of terminus advance has increased slightly since 1895, with the exception of a slowed advance between approximately 1972 and 1984. The short-lived closure events in 1986 and 2002 were not initiated by perturbations in ice velocity or environmental forcings, but were likely due to fluctuations in sedimentation patterns at the terminus.”

Read more about this paper.

Please follow, share and like us:

Share your thoughts