Roundup: New Stories on Black Carbon

Posted by on Jan 26, 2015

Spread the News:

We feature three stories, all of which focus on black carbon. This atmospheric pollutant plays an important role in accelerating glacier retreat. Moreover, policies can be designed to reduce it, by supporting alternative fuels and improved technologies. Reductions in black carbon also bring health benefits, since this substance leads to pulmonary diseases.

Story 1: Ice Core Data from Svalbard

Flickr/Mariusz Kluzniak

Source: Flickr/Mariusz Kluzniak

“The inner part of a 125 m deep ice core from Holtedahlfonna glacier (79◦8 N, 13◦2 E, 1150 m a.s.l.) was melted, filtered through a quartz fibre filter and analysed for EC using a thermal–optical method. The EC values started to increase after 1850 and peaked around 1910, similar to ice core records from Greenland. Strikingly, the EC values again increase rapidly between 1970 and 2004 after a temporary low point around 1970, reaching unprecedented values in the 1990s. This rise is not seen in Greenland ice cores, and it seems to contradict atmospheric BC measurements indicating generally decreasing atmospheric BC concentrations since 1989 in the Arctic.”

Read more about this research here.

 

Story 2: Black Carbon over the Himalayas and Tibetan Plateau

Source: Flickr/Randomix

Source: Flickr/Randomix

“Black carbon (BC) particles over the Himalayas and Tibetan Plateau (HTP), both airborne and those deposited on snow, have been shown to affect snowmelt and glacier retreat. Since BC over the HTP may originate from a variety of geographical regions 5 and emission sectors, it is essential to quantify the source–receptor relationships of BC in order to understand the contributions of natural and anthropogenic emissions and provide guidance for potential mitigation actions. ”

Read more about this research here.

 

Story 3: Modeling of Climatic and Hydrological Impacts

Source: Flickr/Bernard Blanc

Source: Flickr/Bernard Blanc

“Light absorbing particles (LAP, e.g., black carbon, brown carbon, and dust) influence water and energy budgets of the atmosphere and snowpack in multiple ways. In addition to their effects associated with atmospheric heating by absorption of solar radiation and interactions with clouds, LAP in snow on land and ice can reduce the surface reflectance (a.k.a., surface darkening), which is likely to accelerate the snow aging process and further reduces snow albedo and increases the speed of snowpack melt. LAP in snow and ice (LAPSI) has been identified as one of major forcings affecting climate change, e.g. in the fourth and fifth assessment reports of IPCC. However, the uncertainty level in quantifying this effect remains very high.”

Read more about this research here.

 

Spread the News:

Leave a Reply

Your email address will not be published. Required fields are marked *


*